Le droflème des modéles nucléaires

- Tans le domeino des réactions nudiailes a été indsonit le modile Lu pritar de pointive
- La krmiure du noyou a été, aursi, nodelélés Lo porimiica idéé a leté d'irtroduir un modèe. en concher swoforont une ituxcture trés analoque ò celle de l'atome L'ícrtion borelompiunne du noyaur sur un élecrow" ext beancons. le champ orédominant du noyou. Lans le reyain on ne puet rien voir de seublable pour les nudíons.
In 1934 a été introduit le modéle an wouches du voyou, mais il a e'te' abaudonne' tris vite porce que une bbection théorigue inpuotante a éte' fofée: des actions 2 à 2 ti's frites les couchas micléonignes
- Q'autre parte, on a considéré des modéles oir un nuctén interagit faitement avec chacum des autres, spécialemant avec ses世lus paroches voisius en rainow de la courte portée des foices Eboogue nucléon a un parcours moyen fetit devent le ragon vadeaire. be sont les nodíles à forte iuteraction
- Wous avous discutá gor le unodèle undéaise de la gontte liquide, dévelopaéé en connaxion avec le vodile du utyon compo te, secuffipue au domatine dar réactions madáaises.

MEMENTD ！\％utre ces deux tendances extrêmes et parce qu＇aucune ne repréentait fien toute la réalité，des modeles intermédiaires ont été de véloppés．
gr 藘tare g
 bare de combustibil sau ansambluri．

Garnitura concind ugitidide curgere pentrua asigura o
 （inveli《ul exterior）deasemenea con＠ine sus unul sau doi separatori de elemente combustibile sau separatori intermediari cu care menein distane ea intre elementele combustibile．Doua g shuri

 latg mi《xcarea ansamblulut de combustiontare man ufite
 de sus ansamblurilor de elemente combusitare：Aceste g g uri mathide debitaternativ pentru rate cire，mbustizule ananjeteninfteinte

 multe scontri 76.2 cm lungme，cy lungimea active a

 barbindividouitit facute prin sudur cu arc electric．Acesteatin $d e$ aprozimativi io promec seceinne la cap sinuctural fiecarui element

elemeatyturepabustibildaproximativ 76.2 cm ．

 distan Garea barelor de combustibil．Fiecare din cele $25 \mathrm{dg} /$ ve soumis qu＇ 0 ．un potubliel moyou et a aiusi sen d＇iwteraction directe avec chauna dar autres．Le irobabilité de diffesion do deus nuclíous daus le noypu est farble，done le libré parcomrs

Modéles en corches

- La comaissance avec précision des énerojes des porticules α, la découverte de leur structure fine, par Rosenblunn, et la systínatique de res énergies ont montré pue le 82^{-4} proton des noyoux radioaclifs α sont pless lie'oué les outres, voritiun (60 80. $81^{-e}, 83^{-e}, 84^{-e}$) ; de mine pour le 126^{e} nentron relativenent à ceux de rangs vrisius.
D'oí l'idée d'un nodi'le eh Conches proposée par olsasser Mosis, celui-ci ve pot trorwer les noubbres mapiques" 82 it 12 C d'uare manièse satisfaisonte.
Autre auteur de la trémière variante du uodele en couches a e'te' Ingganheinar
- Aux discontinuités parer les courbes des énorgles des particules α par difersent noyoux, en fonction de Z on N ont été apruté's outres foits Cexpérimentoux qui suggèraient la bes doites expérimentoux ont "te liés de la radiractivite' induite, desdésiuteprations \rangle, des réaclions ovec neutrons
- Les clus inpertants faits expérimentanx sont:
(a) Abondance les élóments at noublre magignes
- abondonce relative
- aboudonce absolue sur terre
() Ionergies de liairon
* \& lus tord
(0) L'émisrion retardée de weutrons (1936-1938)
(0) L'émistion retardee de weutrons
(d) Lection efficace d'aborbtion des nuentrons (1939 brifiths
I94e Flughes')
aremiors vivaux ox cités des

Premiére tentative de modéle en
couches du noyou
L Letentiel noyen

- Les undéous sont des fernious; ils ont un sosin 1/2 et boeissent an primiope d'exclusion de Pauli
La fonction d'onde olobale du noyou drit ètre antisymétripue por rappoit à l'echange de 2 uncléous de méme nature
- Onl admet que choone uncléor de noyou subit une force dérrivant d'un potentel moyon qui redrésente l'action de trus les antres nudions sur relui ci. On considére que ce potentiel noyen a nue symatrie şhérique: $V=V(r)$. On admit aussi, que k poteutiel $V\left(r_{r}\right)$ varie comme la densité nucléaire.
Les expériments de diffusion d'électrons par des uoyourx ont monter que la dousitet protom'gue varie da la fos son anivante Sens. if (Fig.A). Lat variation de la dusité porlonigue

$$
\text { avec } R_{A}=r_{0}^{(1)} A^{1 / 3} \text {; On } \pi_{0}^{(1)}=1.1 \text { Fm; } a=53 \text { Fm }
$$

- On dent admettre que la variation de la densité nentronipue ent sensiblement la néme.
Sonc.

$$
V(r)=\frac{-V_{0}}{1+\exp \left[\left(r-R_{1}\right) / a\right]}
$$

Aonce que Is forces uncléaires pont atractives
I An.i. la aremière tentative ólsäser a pris le tron

- Avec l'hporthise du pcoontenticl moyere, en admettant de plus qu'il n'y a aucun complage entre soin et moment orbitab, la recherche des niveaux nucléaires es analogice à celle de la Aructure atomique.
On considére des couches constituées chacuve gar des e'tats d'énoroje voisins
- Les nombre quantipnes fondamentans sont, comme daus l'atore
$x=$ nombre α wantopue rodial $x=1,2, \ldots \ldots$
$l=$ noublere guantique obbital $b=0,1, \ldots . x-1$
$m_{l}=$ nombre quantipue mapnitique orbital $\left|m_{l}\right| \leq l$
$m_{s}=$ noubbre quantipue magnetique de upin $m_{s}= \pm 1 / 2$
- L'équation de Sebrödinger bour un nucléón de masse mM est:

$$
\left[-\frac{\hbar^{2}}{2 m_{N}} \nabla^{2}+V(r)\right] \psi(\vec{r})=E \psi(\mid \vec{r})
$$

Parce que de woteutiel noyen or une symetrie iphérigne nous owons, en cooroloruéés aphériones,

$$
\nabla^{2}=\frac{\partial}{r^{2}}+\frac{2}{r} \frac{\theta}{\partial r^{2}}-\frac{(l)^{2}}{r^{2}}
$$

$$
(l)^{2}=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial y^{2}} x<\varphi
$$

- L'équotion de Cclrödinger devient maintenant:

$$
\left\{\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{L^{\prime}(l)^{2}}{r^{2}}+\frac{2 m_{M}}{h^{2}}[E-x(r)]\right\} 2 \|\left(\overrightarrow{r^{2}}\right)=0
$$

l'équation radiale a lar forme suivarte:

$$
\left\{\frac{d^{2}}{d r^{2}}+\frac{2}{r^{2}} \frac{d}{d r}-\frac{l(l+1)}{r^{2}}+\frac{2 m_{\mu}}{\hbar^{2}}[E-V(r)]\right\} R(r)
$$

Hree un autre chanogment de forction $\mu(r)=r, R(r)$ wons avous:

$$
\left\{\frac{d^{2}}{d r^{2}}-\frac{l(l+1)}{r_{2}^{2}}+\frac{2 m_{H}}{\hbar^{2}}[E-V(r)]\right\} \mu(r)=0
$$

- On considére un puits de potentub rectanquilaire a parois finies (Fip. B)

$$
V(r)= \begin{cases}-V_{0} & , r<R \\ 0 & , r>R\end{cases}
$$

La solution de l'équation radiale aura
 deux formes: $\mu_{1}\left(r_{2}\right)$ poor $r<R, \mu_{2}(r)$ four $r>R$. Les deux solutions faudront poindre por des conditions de continuité en $r=R$

- Le фrobleme on simplifie en фrenant des parois infinies. Once cas

$$
V(r)= \begin{cases}-V_{0} & , \quad r<R \\ +\infty & , \quad r>R\end{cases}
$$

- La fonction d'onde थJ $\left(\overrightarrow{r_{2}}\right)$ d'un nucléon daus a poteuticl est walle pour $r \Rightarrow R$ la particule sera ici trupours liée (les

| 1 |
| :---: | mivesux d'e'weroje indéfgimiment e'levés,' bette sinplification n'entraine pas des modrFications ingirtantos sur les tralcurs des niveaux d'énerojes les thas fas

- Musqu'à la seconde guerre monditale out etter poropose's et des - Vovlince. à parois infinies (D) et à parois
$V(\pi)$ \& parors ingmes

$$
V\left(r_{2}\right)=\left\{\begin{array}{l}
-V_{0}\left[1-\left(r_{2} / R\right)^{2}\right] \\
\infty
\end{array}\right.
$$

(1)

boracterer généraux de la solution

- Pour tous les cas (tities les formes de potantiel noyen', it faunt résoudre l'équation radiale

$$
1\left\{\frac{d^{2}}{d r^{2}}-\frac{l(l+1)}{r^{2}}+\frac{2 m_{H}}{\hbar^{2}}[E-V(r)]\right\} \mu(r)=0 \text {. }
$$

- Les solutions dépendent des de ux indices: (net (b) doric:
$u(r)=\mu_{n} l$

$$
V^{U}(r)=\psi_{\text {mlan }}(r)=\frac{\mu_{\text {ul }}(r)}{r} Y_{e}^{m}(\theta, y)
$$

(ms ast absent parce pue l'épuation radicle ne dépends Sos de Noin।
$V(r)$ en $r=\bar{R}$. Il faut résondre l'équation daves shacum des deux domaines: $r<R$ et $r>R$ et treir comple des

- Les conditions $\mu_{1}(R)=\mu_{2}(R)$ et $\quad \int|\mu(\vec{r})| R d \sigma=1$ (condition de normalisation) determinent les denx constantes à un facteur de phase près.
- L'antre condition de continuité - sur les dérrivées - que l'on pent renylacer par:

$$
\left.\frac{1}{u_{1}} \frac{d u_{1}}{d r_{2}}\right|_{r=R}=\left.\frac{1}{\mu_{2}} \frac{d u_{2}}{d r}\right|_{r=R}
$$

gointe aux conditions aux limites, conduira à des niveanx disorets.

- Pour que les solutions sient physignement acceptables, il fant encre satisfaire anx conditions aux limites suivantes:

$$
\begin{aligned}
& \text { enche sotisfarre soit } \mu_{1}(0)=0 . \\
& R(0)=\text { finie } \\
& R(0)=0 \quad \mu_{2}(\infty)=0 .
\end{aligned}
$$

Colutions
bes du puits de potenticl rectangulaire (A) A parois infinies

$$
r>R \Rightarrow \mu(r)=0
$$

$\left.r<R \Rightarrow V(r)=-V_{0} \Rightarrow \begin{array}{l}u(0)=0 \\ u(R)=0\end{array}\right\}$ les conditions ans limites
(a) $l=0 \Rightarrow$ état Δ.

$$
\frac{d^{2}}{d r^{2}} u+k^{2} u=0
$$

$$
k^{2}=\frac{2 m_{N}\left(E+V_{0}\right)}{\hbar^{2}}
$$

\Rightarrow shtion $\mu(r)=A \sin k r+B \cos k r$
$\mu(0)=0 \Rightarrow B=0 \Rightarrow|A| \Rightarrow$ or la condition de normalisation
\Rightarrow les niveaux d'énergie:

$$
E_{n_{0}}=-V_{0}+\frac{\hbar^{2} k^{2}}{2 m_{N}}=-V_{0}+\frac{\hbar^{2} \pi^{2}}{2 m_{M} R^{2}}
$$

$n \equiv$ noubrere de vérors de la fouction rodiale u(r entre θ et l'infiui (R); lie zeéro à l'osigive et à l'infini nout exden.

$$
\frac{n \pi r}{R}=p \bar{n} \Rightarrow R=\frac{R}{w} R \quad \phi=1,2, \ldots, w
$$

- lo. candition de vorncalisetion:

$$
\begin{aligned}
& \int_{0}^{R}|u(r)|^{2} d r=1 \\
& \int_{0}^{R}\left|A \sin \frac{n \bar{n} r}{R}\right|^{2} d r=1 \quad \Rightarrow \quad|A|^{2}=\frac{2}{R}
\end{aligned}
$$

(b) $l \neq 0 ;$ eltats: $p, d_{1} f_{1} \ldots$

- Equation radiale: $\left[\frac{d^{2}}{d s^{2}} u+\left[k^{2}-\frac{l(l+1)}{r^{2}}\right] u=0\right.$.
- équation de Bessel \Rightarrow solution régulière $R(r)=u(r) / \sigma$

$$
R\left(t_{2}\right)=N \sqrt{\pi / 2 k r} J_{t+1 / 2}(k r)=N_{l}\left(\frac{k r}{2}\right)
$$

$M=$ const. \Rightarrow cond de notumalisation
$x \equiv k r$

$$
f(x)=p_{l}\left(\frac{1}{x}\right) \frac{\sin x}{x}+Y_{l}\left(\frac{1}{x}\right) \frac{\cos x}{x}
$$

$P_{l}=$ polynônc à coefficients rééls de de gré l

$$
l-1
$$

$$
Q_{l}=
$$

- Allurre gévérale de fe: lorsque x croit de 0 à $+\infty$ la 1. Tion 1 commenbuce bar croitre comonve x^{l+1}, puis de plas
oscille indéfiniment entre deux valeurs extrếmes qui teudent X. 7 asymptotionement vers +1 et -1 respectivement.

$$
\begin{array}{ll}
l=0 \Rightarrow Q_{0}=0 & P_{0}=1 \\
l=1 \Rightarrow Q_{1}=-1 & P_{1}=1 / x \\
l=2 \Rightarrow Q_{2}=3 / x & P_{2}=3 / x^{2}-1
\end{array}
$$

- La condition aux limites $\mu(R)=0$ entraîue $\mathcal{L}(k R)=0$
- Il fout chorchor les valeurs x_{n} de s pour les quelhs $f_{e}(x)$ s^{\prime} aninule $\Rightarrow f_{e}\left(x_{w}\right)=0$. Tl equivant à

$$
\operatorname{tg} x_{u}=-\frac{Q_{l}\left(1 / x_{w}\right)}{P_{l}\left(1 / x_{n}\right)}
$$

\Rightarrow la detarmination gia фhipue das valuurs xy pour chapie
valuar de l
$l=1$
valuar de
$\operatorname{tg} x_{n 4}=x_{n 1}$ cowrbas $\operatorname{tg} x$ et $y=x \quad($ Fig. $O)$ $x=0 \Rightarrow$ solution rejetéc
$x_{n_{1}} \Rightarrow k=\frac{x_{n_{1}}}{R} \Rightarrow$ les niveoux d'éneroje

$$
t_{m}=-V_{0}+\frac{\hbar^{2}}{2 m R_{\mu}^{2}} x_{m}^{2}
$$

$$
x \gg 1 \Rightarrow x_{n_{1}} \simeq \pi(n+1 / 2)
$$

Remarques (1) u requésente toujours le nourlore de zéros de $R_{n l}\left(k_{2}\right)$ intre $r=0$ At $R \Rightarrow f_{l}(k r)=j_{l}\left(\frac{x_{n} l r}{R}\right)$ s' ancule pour

$$
\frac{r}{\Delta}=\frac{x_{f l}}{1} \quad \phi=1,2, \ldots, n
$$

(2.) À l'origine $f^{(x)}$ se comporte connue x^{l}. on voit que phus $l .8$ est prand, c'est-a-dire plus le monent orbital est gravad, slus la particule a des chonces de se trouver loin du centre (Ifet contrifuge) \rightarrow
beci est un résultet ósúral inde bendanit de la fince de $V(r)$
$M=u+l=$ uonbre Istal de péros
(b) Puits à porois fiuies

$$
\frac{r<R}{\frac{d^{2} u}{d r^{2}}+\left[k^{2}-\frac{l(l+1)}{r^{2}}\right] \mu=0}
$$

La solution:

$$
\begin{aligned}
& \frac{\mu_{n l}(r)=r . N_{n l} \cdot f_{e}\left(k_{r}\right)}{\left(\frac{L^{2} u}{\mu^{2}}+\left[-\alpha^{2}-\frac{l(l+1)}{r^{2}}\right] u=0\right.} \\
& \alpha=\frac{\sqrt{-2 m_{N} E}}{\hbar}=\frac{\sqrt{2 m_{\mu}|E|}}{\hbar}
\end{aligned}
$$

a) $l=0 \Rightarrow$ ctat s

$$
r<R: u_{1}=A \text { six } k r
$$

$$
\begin{aligned}
& r<R: u_{1}=A \sin k r \\
& r>R: \mu_{2}=C e^{-\alpha r+\Delta e^{\alpha r \cdot}} \begin{array}{l}
\mu_{2}(\infty) \leq 0 \Rightarrow D=0
\end{array},
\end{aligned}
$$

$$
u_{1}(R)=u_{2}(R) \Rightarrow A \sin k R=C e^{-\alpha R}
$$

La condition de contivuité pour la dérivié logarithmique:
$R R=x_{n e}$

$$
\begin{aligned}
\operatorname{cotg} x_{n_{0}}=-\alpha R / x_{n 0} \quad & \Rightarrow \alpha^{2} R^{2}=\frac{2 m_{\mu}|E|}{\hbar^{2}} R^{2}= \\
\operatorname{tg} x_{n 0}=-x_{n 0} / \alpha R \quad & =\frac{2 m_{\mu} V_{0}}{\hbar^{2}} R^{2}-\frac{2 m_{H}\left(t+V_{0}\right)}{\hbar^{2}} R^{2}
\end{aligned}
$$

$$
\alpha^{2} R^{2}=x_{0}^{2}-x_{n_{0}}^{2}
$$

en bosant $\sqrt{x_{0}^{2}=\frac{2 m_{4} V_{0}^{2}}{\hbar^{2}} R^{2}}$

- L'éonotior à résoridre:

$$
\operatorname{tg} x_{n_{0}}=-\frac{x_{n 0}}{\sqrt{x_{0}^{2}-x_{n 0}^{2}}}
$$

\Rightarrow determination graphique des velecars $x_{n o}\left(\begin{array}{lll}l l & \text { à } & \infty)\end{array}\right.$
(N) we peut pas déposser une veleur maxinum: comme l'on necherchle les états liés seulement, E est négatif, sone

$$
0<x_{n_{0}}<x_{0}
$$

s) les niveaux d'énergie

$$
t_{n_{0}}=-\frac{\hbar^{2}}{2 m_{\mu} R^{2}}\left(x_{0}^{2}-x_{n j}^{2}\right)
$$

$$
\mu_{1}(r)=A \sin \left(x_{n} \frac{r}{R}\right)
$$

$\mu_{2}(r)=A \sin R R \cdot \exp \left(\sqrt{x_{0}^{2}-x_{n 0}^{2}}\right) \cdot \operatorname{exb}\left[-\left(x_{0}^{2}-x_{n 0}^{2}, 112 \frac{r}{R}\right]\right.$

$$
\int_{0}^{R}\left|u_{1}\right|^{2} d r+\int_{R}^{\infty}\left|u_{2}\right|^{2} d r=1
$$

$\quad l \neq 0$

$$
\begin{array}{ll}
r_{2}<R & u_{1}(r)=C \cdot r_{2}(k r) \\
r_{2}>R & u_{2}(r)=D r_{r} h_{c}(t)(i \alpha r)
\end{array}
$$

$h_{e}^{(H)}=$ fouction liée à ta fonction de Flaukel $H_{l+1 / 2}^{(+1}$

Ordre oo gromdus des intervalles d'évergie entre wiveans $\hbar=1 ; c=1 ; m_{e}=1 \Rightarrow$ sytéme d'unitis relativiste universel $m_{l} c^{2}=511 \mathrm{kaV}$

$$
\frac{\hbar}{m_{e} c}=3.85 \times 10^{-11 \mathrm{~mm}}
$$

$$
\begin{aligned}
& \frac{\hbar}{2 m_{11} R^{2}} \equiv \Delta E \\
& R=r_{3} A^{1 / 3}= 3.12 \cdot 10^{-3} A^{1 / 3} \text { u.r. } \\
& 1.2 \cdot 10^{-13} A^{1 / 3} \mathrm{~cm}
\end{aligned}
$$

$$
\Delta E=\frac{\hbar^{2}}{2 m_{N} R^{2}}=\frac{1}{2.1836 \cdot\left(3.12 \cdot 10^{-3}\right)^{2} A^{2 / 3}} \simeq 28 A^{-2 / 3} \mu . r .
$$

$$
\Delta E=14.3 A^{-2 / 3} \mathrm{MeV}
$$

$$
\begin{array}{ll}
A=125 & \Delta E=0.57 \mathrm{Mel} \\
A=27 & \Delta E=1.50 .6 \mathrm{cv}
\end{array}
$$

Vodeles en conches
\&'interaction Moin-orbite.

- bour essayer d'expliquer les nomberss magipues" $\Rightarrow 1946$ - aur la sup estion de

Formi \Rightarrow Flaxe Meusen, Suess (reidiego) (cheagert-Maper (loria $\quad(l=0)$

- Chaone nivean (x, l) n' rébaré en denc miveoux $y=l-\frac{1}{2}, y=l+\frac{1}{2}$. $I=C+1 / 2$ est le niveaue be plas profind Fiypors
- bowr un pritential moyen intermíolicire entre le dotantiel le l'orcillatewor harmowipue et le totental de driats rectomqutairs, avec nue intracediase incuraction Noin orbite. En iemplissant les niveaux dons l'podre dplewe on hetrouventres kemanbers
En remplissant cos maqigucs.
- bhaque fois que l^{\prime} Dr atteint ni nombre magione on dit d'une sonche est
comillate
- Les wiveaux induriduels (uly) interméricires sant sonvent addelés sous-couches',
- In suppose que les écarts d'energier entre do. de la snivante sont d'une conche et lo, prenière sons - couche d'ềe conche.
supérieurs anxécarts entre les nivaux Noin-obite
\Rightarrow beci inflique une forte interaction Abu-d'erve $\frac{l+1 / 2) \text { - le dervice enche }}{l \text { res }}$ $\left.l>3 \Rightarrow\left(n_{1} l_{1} f=l+l / 2\right)-l-l / 2\right)$-le prewies de la suivente
$(n, l, g=h-1 / 2)$ L'sigine de l'íteraction Apir-obite
- Le probleine de Lovgine

Domil'atouse est bien connue Miais silion कvend: $\left.H=H_{0}+l \vec{r}\right) l_{s}^{2}$. le colud ert le vôme.

$$
\begin{aligned}
& m_{0}(\vec{r}) \rightarrow f_{i}(\bar{r}) \\
& m_{M}
\end{aligned}
$$

. Tr T. conver empirionemunt l ses proprietas pont tirées des dounées expérinantales). Io precuiére apporoxiuration on pourracherchor

$$
\begin{equation*}
\left.\left\{\frac{d^{2}}{d r^{2}}-\frac{e(l+1)}{r^{2}}+\frac{2 \Gamma(4}{t^{2}}\left[E-V(r)-\frac{1}{2} \left\lvert\, f(f+1)-\mu((t))-\frac{3}{4}\right.\right)\right]\right\} \mu=0 \quad(\lambda *) \tag{2}
\end{equation*}
$$

ne diffire de celle sue l'on a avec Ho senl que far le terme sontan σ

$$
\frac{\frac{1}{2}}{2}\left[\eta(y+1)-l(l+1)-\frac{3}{4}\right]
$$

Soit the vane valuis reatre de H_{0} anocié à $u_{u}(r)$

$$
\left\{\frac{d^{2}}{d^{2}}-\frac{l(1+1)}{n^{2}}+\frac{2 M_{M}}{t^{2}}\left[t_{n l}-V(r)\right]\right\} \mu_{n}(r)=0
$$

L'éf. (*x) est satiffaite ave $\mu=u_{n l}(r) \quad$ ts/

$$
E-\frac{f}{2}\left[1(1+1)-l(l+1)-\frac{3}{4}\right]=E_{i x}
$$

\Rightarrow La Lanction d'onde ont donc la même pour les denx niveant (xlf) dout

$$
\begin{aligned}
& \text { inorgies sont donnés par } \\
& E_{n l}=E_{n l}+\frac{1}{2}\left[y(y+1)-l(l+1)-\frac{3}{4}\right] \\
& y=1-\frac{1}{2} \quad E_{n y}=E_{n l}-\frac{1}{2}(l+1) \\
& 1=l+\frac{1}{2} \quad E_{n y}=E_{n l}+\frac{1}{2} l \Rightarrow
\end{aligned}
$$

\Rightarrow Ist plors protred - en cocriol - वf $f<0$.

La distance euta bs denx nivanx eft;en aleor absime:

$$
\Delta_{(w)}=\frac{|f|}{2}(2 u+1)
$$

Sibe ditit crotue onec t, a qui secuitie en bon acrod avec lexférments.

$$
\begin{aligned}
& \log _{9 / 2}-\lg _{y / 3} \quad \Delta_{l} \approx 3 \mathrm{MNV} \Rightarrow 1 / 1 \approx 0.6 \mathrm{MeV} \\
& 1 \mathrm{~h}_{1 / 2}-1 \mathrm{hg}_{\mathrm{l} / 2}
\end{aligned}
$$

\Rightarrow tabel Klinkewborg - Rer. Mod. Phyo. $24(1952) 63 \rightarrow 1 \Delta E$ 梱

$$
\begin{aligned}
& \Rightarrow \text { tabl Klinkenborg } \\
& \mu, Z>50 . \Rightarrow \text { differartes ft o ot } \mathrm{L}
\end{aligned}
$$

Les prévisions an modete en conches de
Morert - Mayer, Mensen, Foxer at Suess
CTtots monent omonlaire of prits' o' un mivene unclíaire.
(a) Rivesu nucleaire fondiamenta. - otinue en rums barsant pue coitain woubre de
srus-conche "n影"" en x it pp, puis on auro whe sonscouche "suferficicll"
Niveax nudíaires excitées \Rightarrow des sous-conches propondes pentent atre incompleat quis élevés). iai la valeur de l'énrgie d'un niveau nucliaire ent la anmme des énergies des
e'fats individuels фhsienses (ni $l i f \cdot)$ pouvent étre les mímes

Pindmit: $\quad U^{\prime}=V S\left(x_{1} l_{1} y_{A} ; \vec{r}_{A}\right) \ldots . . V\left(x_{A} l_{A} f_{A} ; \vec{r}_{A}\right)$
Tenant cong t_{e}^{+}de l'e antisymiétrie \Rightarrow erproduit doit étre autitymétrisé sur ds
coridomeies ders protows et

- bouche confléte \rightarrow contrifution à torití par le factur $(-1)^{(2 \gamma+1) l}$
 (b)
- can d'une particule à stim $1 / 2 \Rightarrow$ fonction d'onde est un sbiuor, à dent combosanter $\left(\nu s_{1}, \gamma_{2}\right)$.
- Чi l'hamiltorien ue dípend que de la position

$$
H=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(r)
$$

$\Rightarrow 2$ équotions anx valears propres qui sont découplées:

$$
\begin{aligned}
& H \|_{1}=E 2 \oiint_{1} \\
& H 2\left\|_{2}=t\right\|_{2}
\end{aligned}
$$

\Rightarrow solutions

$$
\begin{aligned}
& \psi_{1}=n_{1} \varphi(\vec{r}) \\
& \psi H_{2}=x_{2} \varphi(\vec{r})
\end{aligned}
$$

- Le cradition de normolisation

$$
\int\left(\left|v_{n}\right|^{2}+\left|\left.\right|_{2}\right|^{2}\right) d v=1
$$

$\therefore \int\left|\varphi\left(r_{2}\right)\right|^{2} d v=1 \Rightarrow\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}=1$
n_{1}, n_{2} ont we rapsort avitraire; alonc, la direction du Nion est arbitraire
L'interaction spim-obite - cas de l'atome

$$
H=H_{0}+\xi(\vec{r}) \vec{l} \cdot \vec{s}
$$

Vourtoatons que:

$$
\begin{aligned}
& {[H, d z]=\hat{0} \Rightarrow[H, \vec{l}] \neq 0} \\
& {[H, \Delta y]=0 \Rightarrow[H, \vec{\Delta}]=0 \text {. }} \\
& \text { Mais }\left[H, \eta_{z}\right]=0 \text { at }\left[H_{1} \vec{\jmath}\right]=0 \text { M } y_{z}=l_{2}+s_{z}-\vec{l} \vec{\jmath}=\vec{l}+\vec{A}
\end{aligned}
$$ (redations de commutation dae moment sinétique).

$$
\Rightarrow\left[H_{1}(y)^{2}\right]=0
$$

- La conmutation da H et \vec{l} se déduit ouvsi de l'invari suce por rortatiin If est un riweur u'art doas un scalaire \Rightarrow
L'e guation: $H\left(x_{i}, b_{i}, s_{i}\right) \psi_{S}=E \sum_{S}$
IN inmoriante bor potation $f_{i} H\left(x_{i}^{\prime}\right.$, si, sis $U^{\prime}=E D S^{\prime}$

Pour une ritation do autowr de OX_{3} :

$$
2 y^{\prime}\left(x_{i}^{\prime}\right)=\left(1+i d \alpha f_{2}\right) \geqslant s\left(x_{i}^{\prime}\right)
$$

Souc $\left.\left[\mu, \frac{1}{2}\right]=0, H, \vec{\jmath}\right]=0$ bowz un H quelesnone inverriount por rotation
Yo. démivition ent satislaite pore

$$
\begin{aligned}
& \left.\left[H_{0}\left(x_{i} \mid \phi_{i}\right)+\vec{\zeta}(\vec{n}) \vec{l} \cdot \vec{\beta}\right] \psi=E 2\right\} . \\
& \left.=\omega^{+}\left[H_{0}(\vec{r}, \vec{b})+\overrightarrow{z^{2}}\right) \vec{\ell}, \vec{\Delta}\right] q=+\psi \psi^{t} \psi
\end{aligned}
$$

$\varphi^{+}=$simeser arbitroire

- Tour la transfonvasion d'axes ox a i

$$
\begin{aligned}
& \text { ansoumaion } \\
& \left.H_{0}\left(x_{i} \mid p_{i}\right)=H_{0}\left(x_{i}^{\prime}\right) \phi^{\prime}\right) \\
& \text { inveriant ans arsas: }
\end{aligned}
$$

tandin•解 ${ }^{+\vec{l} \vec{s} 2 \|=0^{\prime}+\vec{l} \cdot \vec{s} W^{\prime}}$

$$
\Rightarrow \sum_{f}(\varphi+l \cdot f)(f+\vec{s} 2 l s)
$$

oi dhaccion des facteriss se pomporte come ni vecteur dans la tramblomation. $(*)$ Log. $(*)$ s'écrit:

Vonclution L'inariance por ontation il sufit dore d'examiues les
Gonclution exprevions conane \dot{p} les opíraturss $\vec{p}, \vec{p}, \vec{l}, \vec{\Delta}$ etanient das vecteurs normaur

Jenoad corngle de l'adaition des momeuts angulainus les buctins
prapres cherchiés sout de la torme:

$$
\begin{aligned}
& H_{y}^{m}(r, \delta, \varphi)=R(r) \sum_{m, m s}\left\langle m_{e} \Delta m_{\Delta}\right| \eta m>V_{e}^{m l}(\theta, \varphi) \chi_{A}^{m_{A}} \equiv R(r) \sum_{l=1}^{m}(\theta, \varphi) \\
& <\left\langle m_{l} \Delta m_{s} \mid \mathrm{gm}_{\mathrm{m}}\right\rangle=\text { conficientsmeletsch-Gordoirn réalisent le }
\end{aligned}
$$ couglage de l et $A=1 / 2$

$x^{W_{1}}$ - vectewrs Arapres de $(\vec{B})^{2}, ~ \Delta y$, ,oors $\Delta=1 / 2$

$$
x^{m=1 / 2}=\binom{1}{0} \quad x^{m_{1}=-1 / 2}=\binom{0}{1}
$$

Il n'ert pas nécessaire de connaitre ces expressions des weif Cletrch-Godan

$$
\alpha \quad \beta
$$

pour trower les voleurs oropres de t

$$
\begin{aligned}
& \text { ur trouver les volewrs or orone } \\
& |\overrightarrow{\mid}|^{2}=(\vec{l})^{2}+(\vec{s})^{2}+2 \vec{l} \vec{s} \\
& \Rightarrow \text { vilouta }
\end{aligned}
$$

2) $y^{m} \Rightarrow$ vilonta.

$$
\begin{aligned}
& \left.H^{2} \|\right\}=\left\{H_{0}+\frac{1}{2} \xi(r)\left[(y+1)-\ell(1+1)-\frac{3}{4}\right]\right\} य \\
& H य \|=\left\{-\frac{\hbar^{2}}{2 m_{0}}\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\gamma}{\partial r_{2}}-\frac{l(l+1)}{r^{2}}\right]+\nabla(r)+\frac{1}{2} z o r\right)\left[f(\eta+1)-\operatorname{ll(x+1)-\frac {3}{4})\} \psi \psi }\right. \\
& H U_{s}=E \| s \text { so } 2 \text { radiale } \\
& u(r)=r \cdot R(r) \\
& \left\{\frac{d^{2}}{d r^{2}}-\frac{l(l+1)}{r^{2}}+\frac{2 m}{h^{2}}\left[E-V(r)-\frac{1}{2} ?(h)\left(y(\eta+1)-l(t+1)-\frac{3}{4}\right)\right]\right\} \mu=0 \text {. }
\end{aligned}
$$

Les voluars preneres et solution gropres de cette equatior dépreuder
 Liginéréas d'robe $\frac{2 y+1}{}$ eva x

- Pour les états liés elles ont obtanes sar la conolition one $\mu_{n} l_{r}(r) \leq 0$, tour $r=0 ; ~ R \rightarrow \infty$ LST définie unitorus pom
- Les fonctions propres de H correspondoutes mit:

$$
y_{m}^{m}(\vec{r})=\frac{u n g s(x)}{r} y_{j}^{m}\left(\theta_{1}, y\right)
$$

\Rightarrow le vivean d'ánergie $E(u l)$ que l'on await avec l'Hamiltinion tho ise trouve en géviral $(l \neq 9)$ dédoiblé en zuivears $E(n, l, g=l-1 / 2)$ et

Les $2(2 l+1)$ sons-étatis maprétiaqus cowindus sis $E(n l)$ se trourait aloss sépaiés en

$$
\begin{aligned}
& \quad E=E(u, l, j=l-1 / 2) \\
& \text { aloss sépaies en } \\
& 2 y+1 \text { avec } y=l+1 / 2 \quad(2 l) \quad(2)+2) \quad E=E(n, l, j=l+1 / 2) \\
& 2 j+1 \text { are } y=l+1 / 2 \quad(1 / 2 \quad y=1 / 2 \\
& l=1
\end{aligned}
$$

Arec les électrons atomipues le conglage npiu-otbits it inpost wit pows les ílectrous oroponds. $($ K.L) des noy anx noyuus a landols, daut la vitessemoyeune est groude.

$$
\begin{aligned}
& \text { Votesse moyeune at grande. } \\
& \Rightarrow y=1-1 / 2, y=l+1 / 2 \Rightarrow X \text { (raijns) } \\
& 1=1-1 / 2 \text {. plus bas pue } j=l_{t}
\end{aligned}
$$

$y=1-1 / 2$. ples bas que $\hat{j}=1+1 / 2$ (presper torporss)

