Residual temperature distributions and systematic behaviours of residual quantities following the sequential emission of prompt neutrons

- preliminary results -

Anabella TUDORA

University of Bucharest, Faculty of Physics

WONDER-2018

WONDER-2018, 16/31

The development of a sequential emission modeling (with a deterministic treatment) has had <u>as initial goal the determination of a general form for P(T)</u> to be used in prompt emission models with a global treatment of the sequential emission, like PbP and LA.

For this reason the sequential emission modeling was applied to many fissioning systems benefiting of experimental Y(A,TKE) data, as follows :

i.e. a total number of <u>49 fission cases</u> covering a large range of nuclei and TXE values. These allowed to determine interesting systematics.

The first finding, related to the initial aim \rightarrow <u>a general relation between the</u> <u>average residual temperature <T> and the average temperature of</u> <u>initial fragments</u> <T_i> (A.Tudora et al. Eur.Phys.J A, 54 (2018) 87)

Irrespective of the prescriptions used for $\sigma_c(\epsilon)$ and the level density parameters of initial and residual fragments

Replacement of the triangular P(T) with a moderately broad cut-off at high T by a distribution with a sharp cut-off.

This is justified by the use of a Weisskopf evaporation spectrum which overestimates somewhat the spectra at high energies. This overestimation can be compensated by a triangular P(T) with a sharp cut-off, which eliminates the residual temp. higher than Tmax = (3/2) < T >

Eur.Phys.J.A 54 (2018) 87

WONDER-2018, 19/31

By solving
$$\overline{E_r}^{(k-1)} - S_n^{(k-1)} - \langle \mathcal{E} \rangle_k = a_k T_k^2$$
 for each A, Z, TKE

different quantities for each emission sequence "k" $\rightarrow q_k(A,Z,TKE)$ are obtained, e.g. $T_k(A,Z,TKE)$, $Er_k(A,Z,TKE)$, $\langle \epsilon \rangle_k(A,Z,TKE)$, the average energy carried away per each neutron $\eta_k(A,Z,TKE) = \langle \epsilon \rangle_k(A,Z,TKE) + Sn_{k-1}(A,Z,TKE)$ etc. They appear with the probability expressed by the Y(A,Z,TKE) distribution.

Average values corresponding to each emission sequence:

$$\langle q_k \rangle = \sum_{A,Z,TKE} q_k (A,Z,TKE) Y(A,Z,TKE) / \sum_{A,Z,TKE} Y(A,Z,TKE)$$

by summing separately for the light and heavy groups or over all fragments

A <u>total average quantity</u> corresponding to the sum of the distributions following the emission of each neutron is obtained by averaging $\langle q_k \rangle$ over the probability for emission of each neutron (or the probability for apparition of each residual fragment) Pn_k :

$$\langle q \rangle = \sum_{k=1}^{n} \langle q_k \rangle P n_k / \sum_{k=1}^{n} P n_k$$

Note:

 Pn_k = the probability for emission of the 1-st, second, ...k-th neutron to be not confounded with

P(v) = the probability for emission of one, two, three... neutrons

Ratios of residual temperatures and energies to the ones of initial fragments

for the 49 studied fission cases

Prescriptions: analytical expression of $\sigma_c(\epsilon)$ and level density parameters provided

by the Egidy-Bucurescu systematic (2009) for BSFG

WONDER-2018, 22/31

Average level density parameters of the initial and residual fragments for the 49 studied fission cases.

The global values of <a> (horizontal lines) resulting from the systematic behaviour of < ϵ >_k as a func. of <T>_k and <Er_k>^{1/2} are in agreement with the total average <a> (magenta open circles).

> The fact that <a> for k=1 (red) and k=2 (blue) are close to the total <a> (magenta open circles) is not surprising because the first two emission sequences take place for almost all fragments at the majority of TKE values.

WONDER-2018, 23/31

Probability for emission of the k-th prompt neutron from the light and heavy fragment groups as a function of the average excitation energy of the initial light and heavy fragments and as a function of <TXE> for the 49 studied fission cases.

WONDER-2018, 25/31

The use of other prescriptions does not change the results.

Here examples for the prescriptions $\sigma_c(\varepsilon)=\underline{constant}$ and level dens. parameters of the <u>Gilbert-Cameron</u> systematic for spherical nuclei, which are very different from the prescriptions previously employed (i.e. analytical expression of $\sigma_c(\varepsilon)$, lev.dens.param. provided by the systm. E-B 2009 for BSFG)

APPLICATION of the systematic behaviour $\langle T \rangle_k / \langle T_i \rangle = r_k$ Inclusion of the sequential emission into the Los Alamos model

Up to now in the LA model \rightarrow Tmax of P(T) was taken equal to <Ti>

$$\langle Ti \rangle = \sqrt{\langle TXE \rangle / \langle a_L + a_H \rangle}$$

Madland and Nix (NSE 1982) the same P(T)

 $< Ti >_{L,H} = \sqrt{< E^* >_{L,H} / < a >_{L,H}}$

Madlald and Kahler (NPA 2017) non-equal Tmax for LF and HF (as in PbP)

Now:

The consideration of a triangular $P_k(T)$ for each emission sequence "k" with:

$$P_{k}(T) = \begin{cases} 2T/T_{\max}^{(k)2} & T \le T_{\max}^{(k)} \\ 0 & T > T_{\max}^{(k)} \end{cases}$$

$$T_{\max}^{(k)} = \frac{3}{2}r_k < Ti >$$

 r_k given by the systematic, e.g. $r_1=0.7$, $r_2=0.5$ etc.

c.m.s.
$$\Phi_{k}(\varepsilon) = \int_{0}^{T \max^{(k)}} \varphi(\varepsilon, T) P_{k}(T) dT = \varepsilon \sigma_{c}^{(k)}(\varepsilon) \int_{0}^{T \max^{(k)}} K_{k}(T) P_{k}(T) \exp(-\varepsilon/T) dT$$
$$K_{k}(T) = \left(\int_{0}^{\infty} \varepsilon \sigma_{c}^{(k)}(\varepsilon) \exp(-\varepsilon/T) d\varepsilon\right)^{-1}$$
WONDER-2018, 27/31

Inclusion of the sequential emission into the Los Alamos model

For the input parameters of the LA model (as average values), <u>different prescriptions</u> can be used regarding:

a) $\sigma_c(\varepsilon)$: constant or an analytical expression (depending on the mass number and the s-wave neutron strength function of the nucleus {Z, A-k+1} or provided by optical model calc. with phenomenological potentials adequate for nuclei appearing as FF

b) TXE partition: e.g. by modeling at scission (PbP), the procedure proposed by Madland and Kahler, the method of FREYA (adjustable param."x") of FIFRELIN (implying the nucl.temp.ratio RT)) etc.

c) level density parameters of fragments: either energy-dependent (super-fluid with different shell corrections and parameterizations of the dumping and asymptotic lev. dens.) or non-energy dependent (e.g. systematics of EB-2009 for BSFG, G-C etc.)

Example: $\langle \boldsymbol{\varepsilon} \rangle_k$	$=\int_{0}^{\infty} \mathcal{E} \Phi_{k}(\mathcal{E}) d$	\mathcal{E} $\langle \mathcal{E} \rangle$	$\rangle = \sum_{k=1}^{n} P n_k$	$_{k}\left\langle \boldsymbol{\varepsilon}\right\rangle _{k}\left\langle \boldsymbol{\varepsilon}\right\rangle _{k}$	$\sum_{k=1}^{n} Pn_k$
²⁵² Cf(SF) i) $\sigma_c(\epsilon)$ const, EB-2 ii) $\sigma_c(\epsilon)$ OM (B-G) average number of s	2009 BSFG , super-fluid equences n=3	< ε> _L 1.432 1.517	< ε> _H 1.254 1.309	< ɛ> 1.356 1.428	exp (Göök) ~1.45 (6%) (1.5%)

WONDER-2018, 28/31

Example: $\Phi_{L,H}(\varepsilon) = \sum_{k=1}^{n} Pn_k \Phi_k^{(L,H)}(\varepsilon) / \sum_{k=1}^{n} Pn_k$

sequential emission into the Los Alamos model

Prescriptions: $\sigma_c(\epsilon)$ optical model B-G, TXE partition by modeling at scission and level density parameters of the super-fluid model

WONDER-2018, 29/31

The systematic behaviours presented above can be also used in order to obtain indicative values of different average prompt emission quantities <u>in the absence of any prompt emission model</u>.

If the average temperatures of initial fragments are known for a given fissioning nucleus (i.e. the equivalent $\langle Ti \rangle_{I}$ or $\langle Ti \rangle_{L}$ and $\langle Ti \rangle_{H}$)

then $\langle \epsilon \rangle$ can be obtained from the linear behaviour presented above i.e. $\langle \epsilon \rangle_L = 1.881 \langle T \rangle - 0.022$ and $\langle \epsilon \rangle_H = 1.898 \langle T \rangle - 0.018$ by using the ratio $\langle T \rangle / \langle Ti \rangle \sim 0.6$.

Examples for ${}^{252}Cf(SF)$ for which <TXE>=35.01 MeV, <E*>_L=19.973 MeV and <E*>_H=15.037 MeV

i) using the equivalent $\langle \text{Ti} \rangle$ based on $\langle a \rangle = A_0/11 \text{ MeV}^{-1} \rightarrow \langle \epsilon \rangle = 1.382 \text{ MeV}$

ii) considering $\langle Ti \rangle_{L,H}$ based on level dens.param. of the supefluid model $\langle a \rangle_L = 13.545 \text{ MeV}^{-1}, \langle a \rangle_H = 12.759 \text{ MeV}^{-1}$

 $\rightarrow \langle \epsilon \rangle_{\text{L}} = 1.430 \text{ MeV}, \langle \epsilon \rangle_{\text{H}} = 1.273 \text{ MeV}, \langle \epsilon \rangle = 1.363 \text{ MeV}$

which deviate with 0.7% from the result of Madland and Kahler (NPA 2017)

CONCLUSIONS

The deterministic treatment of sequential emission applied to <u>49 fission cases</u> allowed to obtain systematic behaviours and correlations between different average quantities characterizing the initial and residual fragments and the prompt neutron emission

1. The ratios <T>/<Ti> of LF, HF groups and of all fragments <u>are of about 0.6</u> irrespective of the prescriptions used for $\sigma_c(\epsilon)$ and the lev.dens.parameters, leading to a triangular P(T) with $T_{max} = 0.9$ <Ti> (*A.Tudora et al. EPJA 54 (2018)*)

> <T>_k/<Ti> = r_k (e.g. r_1 =0.7, r_2 =0.5 for LF, HF, r_3 =0.425 (LF), 0.35 (HF) etc.) allow to define $P_k(T)$ for each emission sequence with $T_{max}^{(k)} = (3/2)r_k <$ Ti> and the <u>inclusion of sequential emission into the Los Alamos model</u>.

2. The constant ratios $\langle T \rangle / \langle Ti \rangle \sim 0.6$ and the linear behaviour of $\langle \varepsilon \rangle_{L,H}$ as a function of $\langle T \rangle_{L,H}$ allow to obtain indicative values of different average prompt emission quantities in the absence of any prompt emission model.

3. <Er>/<E*> of LF, HF groups and of all FF are of about 0.43 irrespective of the prescriptions mentioned above and also <Er> $_k$ /<E*> = r'_k (r'_1=0.55, r'_2=0.3 etc.)

4. The linear dependences of $\langle \epsilon \rangle_k$ on $\langle T \rangle_k$ and on $(\langle Er \rangle_k)^{1/2}$ are the same for all emission sequences. Almost linear dependences of $\langle \eta \rangle_k$ on $\langle Sn \rangle_{k-1}$, $\langle T \rangle_k$ and $\langle a \rangle_k$ are established, too.

Many thanks for your attention