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Structures in the energy distribution of the scission neutrons: Finite neutron-number effect
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The scission neutron kinetic energy spectrum is calculated for 236U in the frame of the dynamical scission
model. The bidimensional time-dependent Schrödinger equation with a time-dependent potential is used to
propagate each neutron wave function during the scission process, which is supposed to last 1 × 10−22 sec.
At the end, we separate the unbound parts and continue to propagate them as long as possible (in this case
50 × 10−22 sec) in the frozen fragments approximation. At several time intervals, the Fourier transforms of these
wave packets are calculated in order to obtain the corresponding momentum distributions, which lead to the
kinetic energy distributions. The evolution of these distributions in time provides an interesting insight into the
separation of each neutron from the fissioning system and asymptotically gives the kinetic energy spectrum of
that particular neutron. We group the results in substates with given projection � of the angular momentum on
the fission axis to study its influence on the spectrum. Finally, the sum over all � values is compared with a
typical evaporation spectrum as well as with recent precise measurements in the reaction 235U(nth, f ). Structures
are present both in the scission-neutron spectrum and in the data.
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I. INTRODUCTION

It is now generally accepted that prompt fission neutrons
(PFNs) have two components with unknown relative intensi-
ties. In chronological order, these components are: neutrons
dynamically released at scission (SN) and neutrons evapo-
rated from fully accelerated fragments (EVN). There is no
indication which of these two components is the dominant one
since the gross features of PFN can be reproduced by both
models [1–10]. To determine the relative percentages of SN
and EVN, instead of looking at averaged properties, one has to
analyze PFN observables correlated with fragment properties
in order to remove the above-mentioned ambiguity.

It is also important to find differences, even small, between
the predicted properties of the scission and evaporated neu-
trons that may be investigated experimentally, thus making the
separation of the two components possible. It has been already
pointed out [4] that, for a fixed fragment-mass division, the
angular distributions with respect to the fission axis of EVN
and of SN are different: the first is smooth while the second
presents oscillations due to the proximity of the fragments at
the moment of emission.

This time we concentrate on the kinetic energy spectrum of
the scission neutrons, again for a given fragment-mass ratio.
We calculate it for neutrons with quantum numbers � = 1/2,
3/2, 5/2, 7/2, and 9/2. � is the projection of the angular
momentum on the fission axis. They account for 99% of
the total multiplicity. The result is compared with a typical
evaporation spectrum to reveal differences.
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Section II contains the description of the model used.
The corresponding equations are given in Sec. III. Numerical
results for individual neutron states in 236U are presented in
Sec. IV. In Sec. V the total energy spectrum is calculated
and compared with recent measurements. The summary is in
Sec. VI.

II. FROM BOUND TO FREE NEUTRONS

To calculate the kinetic energy spectrum of the scission
neutrons we need to identify the part of each neutron wave
packet, which left the fissioning system and therefore repre-
sents a free neutron. We do this in the frame of the dynamical
scission model [11] in which the fissioning system undergoes
a diabatic transition during the neck rupture. Due to the cou-
pling with the rapidly changing potential, each initially bound
neutron state becomes a wave packet with few components
in the continuum. This process is simulated introducing a
time-dependent potential (TDP) in the two-dimensional time-
dependent Schrödinger equation (TDSE2D). The model is
best suited to low-energy fission: spontaneous or sub-barrier.
An amount of excitation energy at the last saddle point could
lead to a neutron evaporation before scission, which is not
included in the present calculations.

There are three parameters in the dynamical scission
model: the nuclear shapes just before (αi) and immediately
after scission (α f ) and the duration �T of the transition
between these two shapes. These quantities are not really
known; one can only make educated guesses about them.
The lower limit of �T should be about 5 × 10−23 sec,
i.e., the time required for a Fermi level nucleon to cross a
4 fm thick neck. A value of �T between 1 and 2 × 10−22
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sec can therefore be considered realistic. The minimum neck
radius rmin in the initial configuration predicted by the optimal
scission shapes [12] is ≈2 fm. It is a generally accepted value
since it can be deduced also from general considerations
such as the size of the α particle. We take a slightly lower
value (1.6 fm). There is no indication about the minimum
distance between the surfaces of the two fragments dmin

in the final configuration. We take 0.6 fm. These rmin and
dmin values were already used in our first paper [13] and
have never been changed. They lead to an average scission
neutron multiplicity of 0.56 neutrons per fission event, i.e.,
to only 23% of the total prompt fission neutron multiplicity.
Although we know [1] that both 〈νsc〉 and the average kinetic
energy 〈Ekin〉 are sensitive to the the parameters of the model,
we do not think that it makes sense to adjust them to the
existing experimental values for all prompt fission neutrons
[i.e., to 2.41 and 1.99 MeV respectively, obtained in the
reaction 235U(nth, f )]. When more reliable values for these
quantities are available we will use them to determine the
fractions of neutrons released at scission and emitted dur-
ing the acceleration of the fragments. In fact, self-consistent
microscopic models, such as the density functional theory
extended to superfluid systems and real-time dynamics [14],
could provide estimates for the three parameters of our
model.

The unbound components of the neutron wave packet will
start leaving the nascent fragments immediately after scission
but this separation takes time. Hence they leave during the ac-
celeration phase: up to approximately 6 × 10−21 sec for most
of them. This is a rough estimate based on the half-life of neu-
tron emission at scission, which is about 2 × 10−21 sec [11]

if � = 1/2. Large times require large spatial grids. Although
we implemented transparent boundary conditions [15], the
reflections on the boundaries of the numerical grid are not
completely reduced and we need to push our computational
resources to their limit.

At the beginning, i.e., immediately after scission, the un-
bound neutrons are mainly localized inside the nucleus and
therefore possess very high kinetic energies (of the order of
the depth of the potential). To obtain the measured spectrum,
one has to wait until these neutrons are outside the fissioning
system. This detachment is simulated with TDSE2D, using a
constant potential this time. We stop at Tmax = 5 × 10−21 sec
when the percentage of unbound neutrons that are still inside
the nucleus attains a minimum (about 10%).

Since the neutron motion is much faster than the separation
of the nascent fragments, the freeze of the fissioning nucleus
at its configuration immediately after scission is justified and
it simplifies our numerical task. Even when the neutrons
are outside the fragments, their kinetic energy is at least
1.5 MeV (see Figs. 1–8). The total kinetic energy of the
fully accelerated fragments is 0.75 MeV/nucleon on the av-
erage. Therefore, at the beginning of the acceleration phase
when the scission neutrons are emitted, the velocity of the
fragments is negligible as compared with the velocity of the
neutrons.

The Fourier transforms of the unbound-neutron wave pack-
ets give, at each time, the momentum distributions and there-
fore also the kinetic energy distributions. Asymptotically,
the sum over all neutrons, weighted with their occupation
probabilities, leads to the scission neutron spectrum. Let us
now put the description from above into equations.
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FIG. 1. Square modulus of the unbound WF22 (left column) and energy distribution (right column) at different times T . The wave functions
at T = 0 and 50 × 10−22 sec are represented relative to those at T = 20 × 10−22 sec. The values on the ordinates of the histograms are P22(Ekin )

probabilities multiplied by 100. Emean
kin =

∑
m,n EkinPE1/2

kin∑
m,n PE1/2

kin

where P = kρ |F |2dkρdkz. N is the probability that the wave function is inside the nucleus

at a given time T . The equipotential line corresponding to V0/2 is also plotted (left column, as plain blue line) to position the fragments just
before scission.
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FIG. 2. The same as in Fig. 1 but for the unbound WF26.

III. FORMALISM

The scission consists of the neck rupture and the absorption
of the neck stubs by the nascent fragments. We consider
axially symmetric fissioning nuclei and use cylindrical coordi-
nates. Let |� i(ρ, z)〉 be the eigenfunctions of the Hamiltonian
of independent neutrons in the just-before-scission configura-
tion. During the scission process these functions evolve in a
time-dependent potential according to TDSE2D:

ih̄
∂� i(ρ, z, t )

∂t
= H(ρ, z, t )� i(ρ, z, t ). (1)

The solution is obtained using a numerical scheme of
Crank-Nicolson type [16,17]. The infinite physical domain
is replaced by a finite grid: [0, ρmax] × [−zmaz, zmax] =
[0, 84 fm] × [−128 fm, 128 fm] with �ρ = �z = 1/8 fm.
For the time evolution we use a step �t = 1/128 × 10−22 sec.
Special conditions on the boundaries of the grid are imposed
to reduce reflections [15].

In the nonadiabatic regime, the propagated wave functions
|� i(ρ, z, t )〉 are wave packets, which also have positive-
energy components.

The probability amplitude that a neutron occupying the
state |� i〉 before scission populates an eigenstate |� f 〉

FIG. 3. The same as in Fig. 1 but for the unbound WF28.
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FIG. 4. Square modulus of the unbound WF5/2
11 (left column) and energy distribution (right column) at different times T . The projection of

the angular momentum on the fission axis of this wave function is � = 5/2. The wave functions at T = 0 and 50 × 10−22 sec are represented
relative to those at T = 20 × 10−22 sec. The values on the ordinates of the histograms are P11(Ekin ) probabilities multiplied by 100. Emean

kin =∑
m,n EkinPE1/2

kin∑
m,n PE1/2

kin

where P = kρ |F |2dkρdkz. N is the probability that the wave function is inside the nucleus at a given time T .

immediately after scission is

ai f = 〈� i(�T )|� f 〉 = 2π

∫∫ (
f i
1(�T ) f f

1

+ f i
2(�T ) f f

2

)
ρdρdz. (2)

ai f is �= 0 only if |� i〉 and |� f 〉 have the same projection
� of the total angular momentum. �T is the duration of the
scission process assumed here to be 10−22 sec, i.e., relatively

short. f1 and f2 are the two components of the wave function
corresponding to spin up and spin down, respectively.

The probability that this neutron is unbound at the end of
the scission process is given by:

Pi
em = v2

i

( ∑
unbound

|ai f |2
)

= v2
i

(
1 −

∑
bound

|ai f |2
)

, (3)

where v2
i is its initial occupation probability.

FIG. 5. The same as in Fig. 4 but for the unbound WF5/2
12 .
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FIG. 6. The same as in Fig. 4 but for the unbound WF5/2
13 .

The part of the wave packet, which is in the continuum at
�T : ∣∣� i

em

〉 = |� i(�T )〉 −
∑
bound

ai f |� f 〉 (4)

will leave the fissioning nucleus and asymptotically will de-
scribe the emitted scission neutron.

To calculate the scission neutron spectrum we have there-
fore to propagate |� i

em〉 for as long as possible. We go until
�T + Tmax with Tmax = 50 × 10−22 sec. Since the separation
of the fragments is slower than the neutron emission, for the

sake of simplicity, we keep the fragments in their configura-
tion at �T .

In order to visualize the detachment of the unbound frac-
tions of the neutron wave packets from the fissioning system,
we extract at several times �T + T these fractions and calcu-
late their Fourier transform [18,19]:

F i(kρ, kz, T ) = 2π

∫ ∞

−∞

[∫ ∞

0
� i

em(ρ, z, T )J0(2πρkρ )ρdρ

]

× e−2π izkz dz. (5)

FIG. 7. Square modulus of the unbound WF7/2
04 (left column) and energy distribution (right column) at different times T . The projection of

the angular momentum on the fission axis of this wave function is � = 7/2. The wave functions at T = 0 and 50 × 10−22 sec are represented
relative to those at T = 20 × 10−22 sec. The values on the ordinates of the histograms are P04(Ekin ) probabilities multiplied by 100. Emean

kin =∑
m,n EkinPE1/2

kin∑
m,n PE1/2

kin

where P = kρ |F |2dkρdkz. N is the probability that the wave function is inside the nucleus at a given time T .
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FIG. 8. The same as in Fig. 7 but for the unbound WF7/2
6 .

In this way we can study the probabilities both in co-
ordinate and in momentum space as a function of time.
J0 is the zero-order Bessel function of the first kind. The
transform with respect to the variables ρ, kρ is called the
zero-order Hankel transform. Thus, the Fourier transform
in cylindrical coordinates implies a combination of Hankel
and one-dimensional Fourier transforms. The present study
represents the first application in nuclear physics of such
transforms.

IV. POSTSCISSION EVOLUTION OF THE UNBOUND
NEUTRONS AND OF THEIR KINETIC ENERGIES

Calculations are performed for the fission of 236U having
in mind the reaction 235U(nth, f ), which has been remeasured
recently with better statistics and improved resolutions in
mass, angle and energy [20,21]. The pre- and postscission
nuclear shapes are described by Cassini ovals [22] with only
two parameters corresponding to the overall elongation and
the mass asymmetry [23]. Numerical results for the most
probable mass division (light fragment mass AL = 96) are
presented.

We have calculated the Fourier transform using Eq. (5)
for wave functions corresponding to � = 1/2, 3/2, 5/2, 7/2,
and 9/2. Each point in the (kρ, kz) plane corresponds to
an absolute value K =

√
k2
ρ + k2

z and a probability P =
|F (kρ, kz )|2kρ�kρ�kz that a scission neutron has its momen-
tum �K in the volume element d3 �K . The points of constant K
value lie on a circle. Since the Fourier transform is given only
on the grid points we can represent the K distribution only
as a histogram. For this we divide the domain of K values
into equal intervals and group the grid points according to the
interval to which they belong. Summing up the probabilities
of the points in each group one obtains the probability Pi(K )

that a given neutron i has its K value in the respective interval.
From the momentum distribution one can deduce the kinetic
energy distribution, Pi(Ekin ), using the relation E = h̄2

2μ
K2

and multiplying with the Jacobian dE/dK ∼ E1/2 in order to
accommodate for this change of variable.

Figures 1–3 show unbound wave packets for � = 1/2 and
indices i = 22, 26, and 28 (as sum of square moduli of the
two components f1 and f2) juxtaposed with kinetic-energy
histograms at different times T after scission.

The initial wave packets are given by Eq. (4). At T = 0,
i.e., immediately after scission, the released neutron populates
bound states in the continuum and it is mainly localized in
the neck region since it is there that the potential changes
most. The kinetic energy of the unbound neutron can reach
values as high as the potential depth V0, which is 40.2 MeV
in our case. The average value is, however, lower (around
30 MeV) due a large diffuse surface and tails of the wave
functions that penetrate into the potential wall. One notices
that with increasing time (T = 20 and 50 × 10−22 sec) the
amplitude of the wave functions diminishes, showing that the
neutron is leaving the nucleus. At the same time, the Ekin

distribution is shifted to lower values, reflecting the fact that
the neutrons are less and less present inside the potential
well.

At very large times the neutron should be completely
emitted. One sees that, due to numerical limitations, we
cannot reach this situation: even at Tmax the neutron still
has 10% probability of being inside the fragments. If we
calculate longer, the part of the wave packet that is reflected
on the boundary of the spatial grid returns inside the nucleus
affecting the energy spectrum. Tmax is therefore related to
the size of the (ρ, z) grid used. Since the above-mentioned
probability is small, one can consider that at T = 50 × 10−22

sec the calculated Ekin distribution represents the emitted
neutron well. These single spectra are characterized by a peak
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at low energies (below 2 MeV) plus a short tail towards higher
energies.

So far we have analyzed energy distributions for wave
functions with � = 1/2, which correspond to orbital angular
momentum projections 
 = 0 or 1. In most cases | f1|2 

| f2|2, see Eq. (2), so there is practically no centrifugal barrier.

However, for larger � values, the centrifugal potential,

2

1,2/ρ
2, is expected to play a role. Figures 4–6 show emitted

wave functions with � = 5/2 (
 = 2 or 3) and indices 11,
12, and 13 and the corresponding kinetic energy histograms.
As compared with the previous case:

(i) At T = 0 the square moduli of the unbound wave
functions are displaced from the z axis where the centrifugal
potential has a maximum. Of course this comes from the same
feature of the total wave functions. For this reason they are less
present in the neck region and contribute less to the scission
neutron multiplicity.

(ii) At T = 0 the spectrum is shifted towards lower values
since the kinetic energy is reduced by the centrifugal potential.
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FIG. 9. Kinetic energy distributions at T = 50 × 10−22 sec
for substates defined by the quantum number �. Yield =∑

Pi(Ekin ) × v2
i .

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Ω=1/2+3/2+5/2+7/2+9/2( ×5)<Ekin>=2.248

A.Gook et al.

Y
ie

ld

Weisskopf:Temp=0.9 MeV . . . . . .

Temp=1 MeV - - - - -

10
-2

10
-1

1

0 1 2 3 4 5 6 7 8

Ω=1/2+3/2+5/2+7/2+9/2( ×5)<Ekin>=2.248
A.Gook et al.
Weisskopf:
Temp=0.9 MeV. . . . .
Temp=1 MeV - - - - -

Ekin(MeV)

lo
g

10
(Y

ie
ld

)

FIG. 10. Kinetic energy distributions at T = 50 × 10−22 sec cal-
culated with all neutron states together with recent experimental
results [20] from the reaction 235U(nth, f ). Two typical evaporation
spectra [25] characterized by nuclear temperatures Temp = 1.0 and
0.9 MeV are also plotted for comparison. The EVN spectra and the
SN histogram are normalized to the data. Yield = ∑

Pi(Ekin ) × v2
i .

As a result the average kinetic energy is smaller (≈23 MeV).
At T = 50 × 10−22 sec the average kinetic energy is larger
(≈3 MeV) since the centrifugal potential is now transformed
into kinetic energy.

Figures 7 and 8 show the time evolution of the wave
packets and of the kinetic energy histograms for states (indices

FIG. 11. The SN spectrum convoluted with Gaussian resolution
functions with half-width equal 0.3 and 0.4 MeV.
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FIG. 12. The time evolution of the energy distribution for scis-
sion neutrons with � = 1/2.

4 and 6) corresponding to an even higher � value (7/2).
As expected, 〈Ekin〉 becomes even lower (≈21 MeV) at T =
0 and even larger (≈3.5 MeV) at T = 50 × 10−22 sec. An

interesting feature of the individual spectra at high � values is
the existence of a peak at low energies in the initial spectrum,
the intensity of which increases with time. It reflects the fact
that the wave functions, being located at the nuclear surface,
spread outside the fragments even at T = 0.

V. SCISSION NEUTRON SPECTRUM

To obtain the whole kinetic energy spectrum for a fixed
mass asymmetry, one has to sum the single spectra over all
occupied states and all � values.

Figure 9 shows kinetic energy spectra for � = 1/2, � =
3/2, � = 5/2, � = 7/2, and � = 9/2, respectively. The ki-
netic energy increases with increasing � due to the centrifugal
term. Note however that � = 1/2 gives the dominant contri-
bution (65%).

In Fig. 10 the total spectrum (summed over the five �

values) is shown. It presents a maximum around 0.7 MeV and
an exponentially decreasing tail until 8 MeV in qualitative
agreement with the measured spectrum [24] of all prompt
fission neutrons (PFN). For comparison, we added recent
data [20] obtained for the same constraint on mass asymmetry
(AL = 96). The calculated histogram is normalized to these
data, the factor being 2.52/0.51 i.e., the ratio between the PFN
multiplicity measured for the most probable mass division
(AL = 96) [21] and the number of neutrons that are outside
the nucleus at T = 50 × 10−22 sec. The values from Sec. II
(2.41 and 0.56) are slightly different since (i) the multiplicity
is averaged over all fragment masses and (ii) there are still
unbound neutrons inside the nucleus at time T (≈10%).

One notices that both the data and the calculation are
not smooth. The oscillations in the data are statistically sig-
nificant. The calculated distribution is not smooth since it
consists of a finite weighted sum of individual contributions
with different mean values and widths. The number of non-
negligible terms is only 35, distributed among the � values
as following: 21 for 1/2, 8 for 3/2, 4 for 5/2, and 2 for
7/2. Hence less than half of the total number of the neu-
trons in 236U contribute significantly to the scission neutron
spectrum.

FIG. 13. Square modulus of the total and emitted WF13 at � = 1/2 immediately after scission (left column) and the corresponding energy
distributions (right column). N ↑ and N ↓ are the square moduli of the spin-up and spin-down components.
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FIG. 14. The same as in Fig. 13 but for WF14 at � = 1/2.

In the lowest frame the same comparison is shown in lin-
log scale to unveil hidden differences at Ekin > 5 MeV. One
can see that, in contrast to the EVN, the SN can reproduce
the high-energy tail of the PFN spectrum. This inability of the
evaporation hypothesis to account for high-energy PFN has
been already discussed in Ref. [26].

Two typical evaporation spectra [25], E exp(−E/Temp),
for nuclear temperatures Temp = 1.0 and 0.9 MeV are also
plotted. We stress that, in this case (AL = 96), each frag-
ment evaporates about one neutron on the average and the
Weisskopf formula should work. These evaporation spectra
follow quite well the general trend of the recent data except
at very low and very high energies. Temp = 0.9 MeV repro-
duces better the drop at low energies while Temp = 1.0 MeV
the tail at high energies. Evidently, none of them exhibit
oscillations.

However, the data do not oscillate as much as the calcu-
lations. One reason is that the data are affected by a finite
energy resolution. If we convolute the theoretical spectrum
with a Gaussian resolution function, the amplitude of its
oscillations will decrease. This is shown in Fig. 11 where a
resolution between 0.3 and 0.4 MeV brings the amplitude of
the oscillations into better agreement. This is, however, not the
only reason. There is also the finite fragment-mass resolution

and the fact that our model (as does any model) contains
approximations and numerical limitations.

Finally we tackle the question of how the spectrum would
evolve if we were able to calculate further in time, i.e., beyond
5 × 10−21 sec. We recall that only 10% of the neutrons are still
inside the nucleus (i.e., not emitted). Moreover, it is possible
to predict how these neutrons, once emitted, will modify the
energy spectrum. To endorse this statement, we added Fig. 12
with the spectrum corresponding to all neutrons with � = 1/2
(i.e., 65% of the total scission neutrons) at 2, 3, 4, 4.5, and
5 × 10−21 sec. We can see that, in time, the yield at low
energies (<5 MeV) increases at the expense of the yield at
high energies (>5 MeV), the overall effect being a decrease
of 〈Ekin〉. We can expect this trend to continue after 5 × 10−21

sec. This will actually bring the calculated spectrum into
slightly better agreement with the measured one.

VI. SUMMARY

The dynamical scission model [11] is used to calculate
SN kinetic energy spectra, at different intervals of time after
scission, for the fission of 236U into the most probable mass
division (AL = 96). The evolution of the wave packets |� i

em|2
(representing the neutrons released during scission) and of

FIG. 15. The same as in Fig. 13 but for WF28 at � = 1/2.
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FIG. 16. Square modulus of the total and emitted WF14 at � = 5/2 immediately after scission (left column) and the corresponding energy
distributions (right column).

their kinetic energy, Ekin, distributions reflects the process of
separation of the scission neutrons from the nascent fission
fragments.

The whole spectrum (summed over all occupied neutron
states) at the largest time we were able to attain numerically
(i.e., Tmax = 5 × 10−21 sec) is compared with recent mea-
surements obtained with high statistics and resolution [20] in
the reaction 235U(nth, f ) for the same mass division. Since
we choose not to adjust the parameters of the model to the
existing data but to use instead the original input [13], a
normalization is necessary in order to confront the theory with
the experiment.

As in the case of the PFN angular distribution [1,4], both
hypotheses (evaporation from fully accelerated fragments and
dynamical emission at scission) explain satisfactorily the
general features of the measured spectrum. This difficulty to
distinguish experimentally between two completely opposite
theoretical assumptions is puzzling. There is, however, a detail
that makes the results of the two hypotheses slightly different:
the evaporation spectrum is smooth while the SN spectrum
presents structures due to the finite number of neutrons that
contribute.

In spite of computational limitations (the (ρ, z) grid is not
large enough nor is the time evolution long enough), better
quantitative agreement could be obtained by including the
simultaneous separation of the fragments after scission and by
taking into account the reabsorption of the unbound neutrons
by the imaginary potential of the nascent fragments. Such
calculations are planned.
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APPENDIX: TOTAL NEUTRON WAVE PACKETS
AND THEIR EMITTED PARTS AT α f

As stated in Sec. II, after a diabatic transition at scission,
all neutrons are represented by expansions in the set of

eigenstates of the nuclear configuration α f . At the higher
end, these wave packets are built on states in the continuum,
which can therefore leave the nucleus. In the dynamical
scission model these small parts, defined by Eq. (4), are the
scission neutrons. Pedagogically it is useful to visualize and
understand the differences between the total wave packet and
its tiny unbound tail.

Figures 13–15 show three wave packets corresponding to
� = 1/2. For states with low energies the total wave functions
(WF13 and WF14) are confined in one of the fragments (light
or heavy). The emitted wave functions are concentrated in the
neck region where the coupling to the changing potential is
the strongest. For states with high energies, the total wave
functions are localized in both fragments (such as WF28 in
Fig. 15). Equipotential lines corresponding to V0/2 are also
plotted to represent the fragments immediately after scission.
As expected, the part of the wave packet that is emitted has
higher average energy and more nodes (a larger quantum
number).

Figures 16–17 show two wave packets at � = 5/2. The
total wave functions are restricted to only one of the frag-
ments. One can see the effect of the centrifugal potential:
the wave functions are shifted with respect to the z axis. For
this reason they cannot be present in the neck region where
the potential changes the most. Their contribution to scission
neutron multiplicity is therefore reduced.

FIG. 17. The same as in Fig. 16 but for WF15 at � = 5/2.
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