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Abstract. The deviation ∆Z =< Z >−ZUCD , of the charge of a fission frag-
ment with given mass numberAF , from the unchanged charge distribution is calculated
by the minimization of the total macroscopic energy at scission. The scission configura-
tion is approximated by two spherical fragments with masses and charges (A1,Z1) and
(A2,Z2) separated by a distance d between their interior surfaces. An analytical for-
mula for ∆Z is deduced and applied to the nucleus 236U at different mass divisions. A
qualitative agreement with experimental data for the 235U(nth,f) reaction is obtained
for a wide range of d values (from 6 fm to 12 fm). When the generally accepted varia-
tion of the distance d with the mass asymmetry is introduced, the agreement becomes
quantitative.

Key words: low-energy nuclear fission, scission configuration, fission fragment
charge, charge polarization.

1. INTRODUCTION

As most detailed experimental and theoretical studies of nuclear fission, efforts
to understand how the charge of a fissioning nucleus is devided between the two fis-
sion fragments [1, 2] started during the Manhattan Project. The fundamental question
is: to what extent the spatial distribution of the proton and neutron densities is pre-
served during the transition from the ground state to the scission point. The answer,
as we know it today, is an encouraging “quite well” meaning that the fissioning nu-
cleus is keeping its identity until the neck connecting the nascent fragments cracks,
i.e., till the end. Fission is therefore a process of its own and not a replica of another
phenomenon: a heavy cluster decay for instance.

The search for deviations from the unchanged charge distribution (UCD) in fis-
sion has been stimulated by even older studies [3, 4] on the effect of the Coulomb
repusion of the protons in ground-state nuclei. The increase of the proton density
in the surface region (accompanied by a decrease of the neutron density due to the
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incompresibility of the nuclear matter) is counterbalanced by an increase in the sym-
metry energy. Even so the result was that Z/N is 21% [3] to 36% [4] larger at the
surface than in the center of the nucleus. If true, the light fission fragment should
have a larger < Z/N > ratio than the heavy one since it has a larger surface over
volume ratio.

The deviation ∆Z =<Z >−ZUCD for a fragment of given mass number A is
well established. It was obtained by precise measurements: mass-spectroscopic [5]
for the light fragments and radiochemical for the heavy fragments [6]. It increases
slightly with the mass asymmetry of the primary fragments and has an average value
of 0.5 charge units. Although small this deviation may have an observable effect on
the number of β-decays of a given fragment and, as a result, also on the delayed-
neutron multiplicity.

From theoretical side, the deviation ∆Z has been calculated exclusively by
the minimization of the total energy of the two fragments (separated or in contact)
[2, 7–10]. Only in the first model [2] the charge polarization was included through
a charge density gradient. In all other models the charge density was taken constant
inside each fragment but with different values in the light and in the heavy fragment.

A simple analytical model (as in Ref. [8]) is used in the present study. The
scission configuration is approximated by two spherical fragments, with masses and
charges (A1,Z1,A2,Z2), separated by a distance d between their inner tips. Three
terms dependent on the fragment charge are considered in the minimization: the
symmetry energy (volume term only), the self Coulomb energies of each fragment
and their Coulomb interaction.

As a new element, we introduce here a variation of d with the mass asymmetry.
Calculations of nuclear shapes at conditional saddle and scission points [11, 12] in the
frame of the Finite Range Liquid Drop Model (FRLDM) [13] extended to reflection-
asymmetric nuclei [14] show indeed a net decrease of d at large asymmetries. At
the same result one arrives by applying Swiatecki’s scaling rule [15] to find a lighter
symmetric fissioning system equivalent (i.e., having similar macroscopic behaviour)
with a heavy asymmetric system.

Apparently, the<∆Z > value doesn’t depend on the excitation energy [16, 17]
meaning that it is a macroscopic property rather than a shell effect. The Liquid Drop
Model (LDM) is therefore the proper reference. It would be inconsistent to deduce
the variation of d with mass asymmetry from the variation of total kinetic energy; the
latter being a strong manifestation the double magic 132Sn.
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2. AN ANALYTICAL MODEL

2.1. FORMALISM

Here we approximate the scission configuration by two spherical fragments
with masses, charges and radii (A1,Z1,R1) and (A2,Z2,R2) separated by a distance
d between their interior surfaces. For such a system, we calculate the deviation
<∆Z > that minimizes its total macroscopic energy: E1 +E2 +E12, where

E12 =
Z1Z2e

2

r0

(
A

1/3
1 +A

1/3
2

)
+d

is the fragments’ Coulomb interaction.
The macroscopic energy of each fragment is given by the semi-empirical mass

formula of Bethe [18] and Weizsacker [19]:
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i e
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where av,as,asym are positive constants and r0 is the nuclear radius parameter. The
term δ(Ai) is a shift that accounts for more (less) stability of even-even (odd-odd)
isobars in even-A nuclei. Only the charge dependent 3rd and 4th terms were included
in the minimization.

2.2. FORMULA FOR <∆Z >

If we denote byZ andA the charge and mass of the fissioning nucleus,ZUCD
i =

Z
AAi. Let us consider that the fragments’ charges deviate slightly from this value:

Z1 =

(
Z

A

)
A1 + ∆Z

Z2 =

(
Z
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)
A2−∆Z.

From the incompresibility condition the total nuclear density has to stay constant.
Therefore the neutron numbers of the two fragments must also deviate slightly from
NUCD

i = N
AAi:

N1 =

(
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A

)
A1−∆Z

N2 =

(
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)
A2 + ∆Z.
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We analyze separately the electrostatic and isospin terms to better see their roles.
With the above notations the Coulomb energy becomes:
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where r0=1.2 fm and e2= 1.4398 MeV×fm. Its minimum value corresponds to
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One notices that the terms in the numerator have oposite signs. Let us assume A1 <
A2. The value of ∆Z is determined by the balance between the Coulomb self-energy
that favors a more symmetric charge division (∆Z > 0) and the Coulomb interaction
that favors a more asymmetric charge division (∆Z < 0). However, irrespective of
the mass division the first term is dominant even at d=0 as it can be inferred from
Eq. (2). Hence the sign of the experimentally observed deviation is by all means
reproduced. Its magnitude is sensitive to the separation distance d. This process has
therefore the potential to provide the elongation of the fissioning nucleus at scission.
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In the same way, the symmetry energy can be written as

Esym. = asym

(
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where asym= 23.285 MeV [20]. The first two terms represent the asymmetry en-
ergy for fragments with UCD. Being only quadratic in ∆Z, the asymmetry energy is
neutral with respect to the charge division: decreasing this energy in one of the frag-
ments automatically increases it in the complementary fragment. So its minimum
value corresponds to ∆Z=0. It doesn’t mean that it has no effect. Holding on UCD it
considerably diminuishes the ∆Z value predicted by the Coulomb energy (Eq. (2)).

The sum of the Coulomb and symmetry energies:
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The above formula can be simplified using the reduced mass mR = A1A2/(A1 +A2) and
total distance D = d+R1 +R2
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Fig. 1 – Charge deviations ∆Z as a function of fragment mass. Lines are calculations with a constant
inter-fragment distance d. Full squares are generated by the GEF code [21]. Full circles are

experimental data [22].

3. RESULTS FOR 236U

In the previous Section, we derived a formula for the deviation of the fragment charges
from the UCD value. Now we apply it for the reaction 235U(nth,f). In Fig. 1, the calculated
charge deviations are shown as a function of mass asymmetry for three acceptable values
of d. The red line is for the inter-fragment distance d = 6(fm). The green and blue lines
are for d = 9(fm) and d = 12(fm), respectively. The full squares (magenta) are pre-neutron
data for 236U obtained with GEF code [21]. The full circles (cyan) are the corresponding
experimentally determined ∆Z values [22]. The fluctuations in the data represent even-odd
effects in the fission fragment yields. Our simple model doesn’t contain such effects and
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Fig. 2 – The same as in Fig. 1 but the lines are calculated with a distance d dependent on mass
asymmetry.
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hence we should compare only the average trend.
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Fig. 3 – The fit of GEF data with Eq. (5) in which d= d0− c×|η|.

We found that Eq. (5) can reproduce the observed behaviour especially in the region of
the most probable masses (A1= 90 to 105). Unfortunately the dependence on d is too weak
in this domain to allow us to determine its value.

The disagreement at large asymmetries can be reduced if we consider a decrease of the
distance dwith the mass asymmetry parameter η= A1−A2

A1+A2
, as suggested by macroscopic cal-

culations of conditional saddle and scission points (see Introduction). Figure 2 shows results
assuming a simple linear dependence: d = d0− c× |η|. Different values of the parameters
(c,d0) that define this dependence are used, namely d0 = 9,10,11 and c = 15,20,25. They are
chosen so that the calculated curves stay inside the range of the data points.

Finally the best fit of GEF values is shown in Fig. 3. It is obtained with d0 = 14.172
± 3.835 and c = 32.631 ± 11.440. The large errors are due to the fine structure of the exper-
imental data. Even so, the blue curve gives a satisfactory representation of the experimental
data. To the extent to which the two-sphere approximation is justified, it means that the fis-
sionning system is very elongated at scission (Dcm=25 fm) and that this elongation strongly
depends on the mass asymmetry (d starts from 14 fm at symmetry and decreases to 1 fm at
the largest measured asymmetry). Neither of these characteristics are generally accepted at
present. The Wahl’s data, being even more scattered, do not allow a reliable fit.
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4. SUMMARY

The charge density is not perfectly conserved from the beginning to the end of the
fission process. A simple analytical model was used to estimate the corresponding deviation
∆Z as a function of the fission-fragment mass ratio η at the scission point. It is essen-
tially determined by the balance between the Coulomb self energy of the fragments and their
Coulomb interaction. The first term is always dominant leading to ∆Z > 0 for light frag-
ments and ∆Z < 0 for heavy fragments. The symmetry energy plays also a role: preferring
an unchanged charge distribution, it reduces the absolute values of ∆Z predicted by the
Coulomb term.

A semi-quantitative agreement with experimental data is obtained for a wide range of
distances between the fission fragments at scission. When the generally accepted variation
of this distance with the mass asymmetry is introduced, this agreement is improved. Since
the general trend of the observed deviations can be explained without explicitely assuming
charge polarization, the terminology generally used is, may be, inappropriate.

Two spherical separated fragments, used here, represents the simplest possible “imme-
diately after scission” configuration. However the decision on charge division is taken “just
before scission”. Hence a more realistic calculation requires the minimization of the total
energy of two nascent fragments connected by a thin neck (rneck=2 fm) and this is our goal
for the near future.
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