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Starting from the variational principle, the time dependent pairing equations are generalized by
including the Landau-Zener effect and the Coriolis coupling. A system of microscopic equations of
motion for configuration mixing is deduced allowing the determination of quantities that have the
same meaning as the preformation factors of the α particle. These equations are solved in order
to reproduce the hindrance factors of the α-decay of an odd-A mass nucleus. The alpha decay of
211Po is treated as a superasymmetric fission process, by following the rearrangement of the nuclear
orbitals from the parent ground state up to the scission configuration. The probabilities to find the
excited states of the daughter at scission are obtained from the microscopic equations of motion.
The intensities of the transitions to the excited states of the daughter where evaluated theoretically.
The experimental data were compared with the theoretical findings. A very good agreement was
obtained. A mean value of the tunneling velocity of about 2×104 fm/fs was extracted.

I. INTRODUCTION

A new system of microscopic equations of motion for
seniority one configuration mixings that allows in the
same time the deduction of the time dependent pairing
equations is obtained from the variational principle. The
time dependent pairing equations, formally similar to the
time dependent Hartree-Fock-Bogoliubov equations, are
able to supply an estimation of the dissipated energy.
The Coriolis coupling and the Landau-Zener effect are
mechanisms introduced in this new system of differen-
tial equations allowing single particle excitations, i.e., a
change of the configurations. The formalism is used to
evaluate the branching ratio in the α-decay fine structure
of 211Po.
The α-decay consists in a spontaneous emission of a

He nucleus. In the phenomenological description, a pre-
formed α-particle penetrates an external barrier and at-
tains an energy close to the Q-value of the reaction. The
microscopic part in the description of this process con-
cerns the modality in which the particle is born on the
surface of the daughter nucleus [1–4]. Usually, the prefor-
mation factor of the α-particle is calculated as an over-
lap between the initial configuration of the parent ground
state and the final configuration of the two nuclei close to
scission [5]. The fine structure of the α emission reveals
modifications of the emission probabilities for different
excited states of the daughter nucleus. This phenomenon
was evidenced by Rosenblum in 1929 by measuring the
ranges of α-particles in the air [6, 7]. The kinetic energy
of the α particle has several values that can be associ-
ated to a specific excitation of the daughter nucleus. Mi-
croscopically, a phonon operator acting on the daughter
nucleus ground state may describe a such excited state
[8]. In the case of the α-radioactivity of 211Po, each fi-

∗mirea@ifin.nipne.ro

nal state is characterized by a single particle excitation
that can be associated to a specific seniority one con-
figuration. In order to investigate the the fine structure
phenomenon, it is possible to consider that the total wave
function of the decaying system is a superposition of core-
angular harmonic [9] functions, that is, of combinations
between an interval wave function and an external one,
connected smoothly in the nuclear surface region of the
daughter nucleus. By using the orthogonality property of
the core-angular harmonics and projecting them on dif-
ferent channels, a coupled channel description of the α-
decay fine structure can be obtained. Calculations based
on this formalism were initiated in Ref. [10] and general-
ized to take into account vibrational [11] and rotational
[12] excitations.
In these enumerated theories, the alpha particle is al-

ways preformed on the nuclear surface, the dynamics of
its formation being unclear. But, the α-particle cannot
appear suddenly on the surface of the daughter, even in
the case when the α-particle pre-exists in the parent nu-
cleus. As stated by Hill and Wheeler in a seminal paper
published in 1953 [13], due to the extreme saturation
of the nuclear matter, the states of the nucleons mainly
depends on the boundaries of the many-body potential.
If the α-particle pre-exists in the parent nucleus and it
is moving to the external region, implicitly the nuclear
shape of the whole system is modified. That is, all the
nucleons states are perturbed during the α-decay pro-
cess. Therefore, a simple picture consisting of an overlap
between an unperturbed initial state and a final config-
uration should be not sufficient to take into account the
whole complexity of the process.
In our formalism, we follow the rearrangement of the

microscopic states during the emission of an α-particle,
beginning from the parent ground state and reaching the
scission. The emission of the α-particle is simulated by
modifying the boundaries of the many body potential as
realized in fission-like theories. At scission, two mean
field potentials are obtained: one for the daughter nu-
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cleus and another for the α-particle. The probabilities
to obtain different single particle excitations are given
by the solutions of a system of equations of motion for
superfluid systems. In the next section, this system of
equations is deduced. It should be mentioned that a first
attempt to explain dynamically the α-decay fine struc-
ture was realized in Ref. [14] with a system of equa-
tions of motion in which the pairing field was neglected.
The calculations performed for the α-decay of 211Po are
presented in Sect. III. The last section is dedicated to
conclusions.

II. TIME DEPENDENT EQUATIONS OF

MOTION

During the evolution of a many-body system, two dy-
namical promotion effects arise leading to single particle

excitations: the Landau-Zener effect and the Coriolis one
[15, 16]. Both effects are included in the new system of
equations of motion deduced in the following. The micro-
scopic equations of motion for the configuration mixing
are obtained from the variational principle. These equa-
tions should give the probabilities to find the nuclear sys-
tem in different seniority one configurations during the
evolution in time of the nuclear system and the dynami-
cal values of the BCS amplitudes. The energy functional
is

δL = δ

〈

ϕIM

∣

∣

∣

∣

H +HR − i~
∂

∂t
+H ′ − λN̂

∣

∣

∣

∣

ϕIM

〉

, (1)

where the many body-state is considered as a superposi-
tion of products between seniority one Bogoliubov wave
functions and rotation functions:

|ϕIM 〉 =
∑

Ω,m

cΩ,m|ϕIMΩm〉 =
∑

Ω,m

cΩ,mb+I,M,Ω,m ×
∏

(Ω1,m1) 6=(Ω,m)

(

uΩ1,m1(Ω,m) + vΩ1,m1(Ω,m)a
+
Ω1,m1

a+
Ω̄1,m1

)

|0〉. (2)

Here, a+Ω,m/aΩ,m are the single particle cre-

ation/annihilation operators, and cΩ,m are the am-
plitudes of the seniority one configurations. Therefore,
the value of |cΩ,m|2 gives the probabilities to find the
configurations with an unpaired nucleon located on the
single particle level labeled by the quantum numbers
(Ω,m). In our notations, Ω denotes the intrinsic spin pro-
jection on the axis of symmetry, and m is a number that
identifies the single particle state located in the same Ω
levels subspace. The variables uΩ1,m1(Ω,m)/vΩ1,m1(Ω,m)

denote the BCS vacancy/occupation amplitudes for
the single particle states (Ω1,m1) in the seniority one
configuration in which the the single particle state
(Ω,m) is occupied by an unpaired nucleon. Because only
the relative phases between these amplitudes matter,
the vacancy amplitude will be considered a real quantity
and the occupation amplitude is taken as a complex
variable. In the expression (2), the blocking effect is
included, that is, the variations of the BCS amplitudes
in accordance with the seniority one configurations are
taken into consideration.
We used the following notation for the operator

b+I,M,Ω,m that creates a rotating state

b+I,M,Ω,m|0〉 =

(

2I + 1

8π2

)1/2 (
Ω

|Ω|

)I+Ω

DI
MΩ(ω)a

+
Ω,m|0〉.

(3)
Here, DI

MΩ(ω) denotes the rotation function with

Ω̄ = −Ω, (4)

Ω being positive and the bar over a symbol meaning the
time reversed state in a pair. The rotation functions

exhibit the following relevant properties

I±D
I
MΩ(ω) = [(I ± Ω) (I ∓ Ω+ 1)]

1/2
DI

MΩ±1(ω), (5)

where the ladder operators are introduced through the
usual definition I± = Ix ± iIy in terms of the angular
momenta components.
In the energy functional (1) several terms are included

as explained below. The many-body Hamiltonian with
pairing residual interaction is considered as:

H =
∑

Ω,m ǫΩ,m

(

a+Ω,maΩ,m + a+
Ω̄,m

a
Ω̄,m

)

−G
∑

(Ω,m)(Ω1,m1)
a+Ω,ma+

Ω̄,m
aΩ1,m1

a
Ω̄1,m1

,
(6)

where ǫΩ,m are single particle energies, and G is a con-
stant pairing interaction.
The axial symmetric rotor energy [17] is

HR =
~
2

2J

(

I2 − j2z
)

+
~
2

2J

(

j2x + j2y
)

−
~
2

2J
(j+I− + j−I+) ,

(7)
where J is the total momentum of inertia, I = (Ix, Iy, Iz)
is the total angular momentum and j = (jx, jy, jz) is the
intrinsic angular momentum of a particle. The first term
in the right hand side of the expression (7) is a constant
of motion. The second term (~2/2J)(j2x + j2y) is called
recoil term and acts only on the intrinsic wave functions.
Therefore, as proposed in Ref. [17], it is considered ab-
sorbed in the Hamiltonian responsible for the single par-
ticle motion. This last assertion is contradicted by the
conclusions given in Ref. [18] were an analyze of the influ-
ence of this term on the rotational structure was realized.
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It was evidenced that this term cannot be properly in-
cluded in the Hamiltonian due to its dependence on the
rotational parameter ~2/2J . This behavior implies that
the potential parameters should be deformation depen-
dents. But, as mentioned in Ref. [19], the recoil term
does not perturb significantly the intrinsic wave func-
tions. For simplicity, in the following we will refer to
the particle rotor model without recoil. The third term
in the expression (7) evidences an interaction between a
particle and the rotational motion, known as the Coriolis
coupling. The Coriolis coupling can shift nucleons from

a single particle level to another one, allowing a change
of the configuration.
A Landau-Zener term is introduced in the functional

(1), to simulate an effect for the dynamical promotion of
a nucleon between diabatic single particle levels charac-
terized by the same good quantum numbers in avoided
levels crossings regions [20, 21]. As specified in Refs.
[22, 23] the interaction that allows this promotion mecha-
nism contribution in superfluid systems has the following
form:

H ′ =
∑

Ω,m,m′ hΩ,m,m′α+
Ω,m(Ω,m′)αΩ,m′(Ω,m)

∏

Ω′,m′′ αΩ′,m′′(Ω,m′)a
+
Ω′,m′′aΩ′,m′′α+

Ω′,m′′(Ω,m), (8)

where hΩ,m,m′ are the interactions between the
states (Ω,m) and (Ω,m′) in the avoided levels
crossings regions. We introduced the quasiparti-
cle creation and annihilation operators, α+

Ω,m(Ω,m′) =
(

uΩ,m(Ω,m′)a
+
Ω,m − v∗Ω,m(Ω,m′)aΩ̄,m

)

and αΩ,m′(Ω,m) =
(

uΩ,m′(Ω,m)aΩ,m′ − vΩ,m′(Ω,m)a
+
Ω̄,m′

)

, respectively. Due

to the interaction hΩ,m,m′ , an exchange of nucleons can
be made between different single particle levels (Ω,m)
and (Ω,m′). The coupling matrix element hΩ,m,m′ is in-
dependent of the pairing interaction G. However, the
promotion probability of a nucleon in an avoided level
crossing region is managed by the term H ′ given by Eq.
(8). This term depends on the BCS vacancy/occupation
amplitudes. These last quantities depend on the pairing
interaction. The magnitude of the coupling matrix ele-
ment hΩ,m,m′ can be extracted directly from the energy
diagram. The maximum value of hΩ,m,m′ is obtained by
calculating the difference of energies at the point of near-
est approach between the adiabatic levels in an avoided
level crossing region [24]. The product in Eq. (8) runs
on all states of the selected pairing levels space, except-

ing the states (Ω,m(Ω,m′)) and (Ω,m′(Ω,m)). As dis-
cussed in Ref. [23], due to the interactionH ′, the diabatic
wave function |ϕIMΩm〉 of the superposition (2) will be
”transmitted” on the diabatic level and ”reflected” on
the adiabatic one after the passage of the avoided levels
crossing region. A dynamical pair breaking mechanism
[25, 26] was also described with interactions similar to
that given by Rel. (8). Dynamical excitations in large
scale collective motion are also investigated by means of
quasiparticle operators in Ref. [27]. For deformed axial
symmetric nuclei, the good quantum number is the spin
projection Ω.
The particle number operator is written as

N̂ =
∑

Ω,m

(

a+Ω,maΩ,m + a+
Ω̄,m

aΩ̄,m

)

, (9)

and λ is the Fermi energy. The sums run over the pairing
active space of single particle levels.
The expectation value of the energy functional (1) is

obtained by summing over the intermediate states given
by the trial function (2):

〈

ϕIM

∣

∣

∣
H + ~

2

2J

(

I2 − j2z
)

− ~
2

2J (j+I− + j−I+)− i~ ∂
∂t +H ′ − λN

∣

∣

∣
ϕIM

〉

=
∑

Ω,m | cΩ,m |2
{

2
∑

(Ω′,m′) 6=(Ω,m) | vΩ′,m′(Ω,m) |
2 (ǫΩ′,m′ − λ) + (ǫΩ,m − λ)

−G |
∑

(Ω′m′) 6=(Ω,m) uΩ′,m′(Ω,m)vΩ′,m′(Ω,m) |
2 −G

∑

(Ω′,m′) 6=(Ω,m) | vΩ′,m′(Ω,m) |
4
}

+ ~
2

2J

∑

Ω,m | cΩ,m |2
[

I(I + 1)− Ω2
]

− ~
2

2J

{

∑

Ω

∑

m′,m c∗Ω+1,m′cΩ,m ((I − Ω)(I +Ω + 1))
1/2

[

uΩ,m(Ω+1,m′)uΩ+1,m′(Ω,m) + v∗Ω,m(Ω+1,m′)vΩ+1,m′(Ω,m)

]

×〈Ω + 1,m′ |j+|Ω,m〉TΩ+1,m′,Ω,m

+
∑

Ω

∑

m′,m c∗Ω−1,m′cΩ,m ((I +Ω)(I − Ω+ 1))
1/2

[

uΩ,m(Ω−1,m′)uΩ−1,m′(Ω,m) + v∗Ω,m(Ω−1,m′)vΩ−1,m′(Ω,m)

]

×〈Ω− 1,m′ |j−|Ω,m〉TΩ−1,m′,Ω,m}

−i~
∑

Ω,m | cΩ,m |2
[

∑

(Ω′,m′) 6=(Ω,m)
1
2

(

v∗Ω′,m′(Ω,m)v̇Ω′,m′(Ω,m) − v̇∗Ω′m′(Ω,m)vΩ′,m′(Ω,m)

)]

−i~
∑

Ω,m c∗Ω,mċΩ,m +
∑

Ω,m,m′ 6=m hΩ,m′,mc∗Ω,m′cΩ,m.

(10)
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Here, we denoted

|Ω,m〉 = a+Ω,m|0〉, (11)

the eigenvectors characterized by the quantum numbers
(Ω,m). The overlaps of the products of quasiparticles of

the BCS wave functions are denoted

TΩ′,m′,Ω,m =
〈

0
∣

∣

∣

∏

Ω1,m1

(

uΩ1,m1(Ω′,m′) + vΩ1,m1(Ω′,m′)a
+
Ω1,m1

a+
Ω̄1,m1

)∣

∣

∣

∏

Ω2,m2

(

uΩ2,m2(Ω,m) + vΩ2,m2(Ω,m)a
+
Ω2,m2

a+
Ω̄2,m2

)∣

∣

∣
0
〉

=
∏

Ω1,m1

[

uΩ1,m1(Ω′,m′)uΩ1,m1(Ω,m) + v∗Ω1,m1(Ω′,m′)vΩ1,m1(Ω,m)

]

,

(12)

where the indexes (Ω1,m1) run over the active pairing
level space, excepting the states (Ω′,m′) and (Ω,m).
These terms reflect the transformation of the products
of the wave functions from one configuration to another
one. If the blocking effect is neglected, then TΩ′,m′,Ω,m

should be unity.
After variation, the expression (10) should supply the

time dependent evolutions of the independent variables

vΩ′,m′(Ω,m), cΩ,m and of their complex conjugates. To
obtain the time dependent equations for configurations
mixing, the expression (10) is derived with respect the
independent variables cm or c∗m. The next equations fol-
low:

−i~ċ∗Ω,m = c∗Ω,m

{

2
∑

(Ω′,m′) 6=(Ω,m) | vΩ′,m′(Ω,m) |
2 (ǫΩ′,m′ − λ) + (ǫΩ,m − λ)

−G |
∑

(Ω′m′) 6=(Ω,m) uΩ′,m′(Ω,m)vΩ′,m′(Ω,m) |
2 −G

∑

(Ω′,m′) 6=(Ω,m) | vΩ′,m′(Ω,m) |
4
}

+ ~
2

2J c
∗
Ω,m

[

I(I + 1)− Ω2
]

− ~
2

2J

{

∑

m′ c∗Ω+1,m′ ((I − Ω)(I +Ω+ 1))
1/2

[

uΩ,m(Ω+1,m′)uΩ+1,m′(Ω,m) + v∗Ω,m(Ω+1,m′)vΩ+1,m′(Ω,m)

]

×〈Ω + 1,m′ |j+|Ω,m〉TΩ+1,m′,Ω,m

+
∑

m′ c∗Ω−1,m′ ((I +Ω)(I − Ω+ 1))
1/2

[

uΩ,m(Ω−1,m′)uΩ−1,m′(Ω,m) + v∗Ω,m(Ω−1,m′)vΩ−1,m′(Ω,m)

]

×〈Ω− 1,m′ |j−|Ω,m〉TΩ−1,m′,Ω,m}

−i~c∗Ω,m

[

∑

(Ω′,m′) 6=(Ω,m)
1
2

(

v∗Ω′,m′(Ω,m)v̇Ω′,m′(Ω,m) − v̇∗Ω′m′(Ω,m)vΩ′,m′(Ω,m)

)]

+
∑

m′ 6=m hΩ,m′,mc∗Ω,m′ ,

(13)

To obtain the previous equations, we take into account
the condition of conservation

∑

Ω,m |cΩ,m|2 = 1, so that
∑

Ω,m cΩ,mċ∗Ω,m = −
∑

Ω,m c∗Ω,mċΩ,m. It is possible to
solve only the equations for positive values of Ω. The
interactions between the states Ω=1/2 and their time
reversed ones are obsoletes because the flows of proba-
bilities in both directions are the sames. Therefore the

probabilities to find a system in a configuration Ω=1/2
or Ω̄=-1/2 remain unchanged.
It should be noticed that for a given configuration, the

well known time dependent pairing equations emerge if
the functional (10) is derived with respect the vΩ,m or
v∗Ω,m.

−i~v̇∗Ω′,m′(Ω,m) = 2v∗Ω′,m′(Ω,m)(ǫΩ′,m′ − λ)−G
∑

(Ω′′,m′′) 6=(Ω,m)

{

uΩ′′,m′′(Ω,m)v
∗
Ω′′,m′′(Ω,m)

×
(

uΩ′,m′(Ω,m) −
vΩ′,m′(Ω,m)v

∗

Ω′,m′(Ω,m)

2uΩ′,m′(Ω,m)

)

− uΩ′′,m′′(Ω,m)vΩ′′,m′′(Ω,m)

v∗

Ω′,m′(Ω,m)
v∗

Ω′,m′(Ω,m)

2uΩ′,m′(Ω,m)

}

−2GvΩ′,m′(Ω,m)v
∗
Ω′,m′(Ω,m)v

∗
Ω′,m′(Ω,m).

(14)

The equations (14) can be re-casted in terms of the
single particle densities ρΩ,m(Ω′,m′) = |vΩ,m(Ω′,m′)|

2
and pairing moment components κΩ,m(Ω′,m′) =
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uΩ,m(Ω′,m′)vΩ,m(Ω′,m′) [28, 29], yielding a system similar
to the time dependent Hartree-Fock-Bogoliubov equa-
tions [30–34]. These time dependent pairing equations
can be generalized to study the partition of the excitation
energy between to complementary fragments by adding

a condition of conservation of the number of particles
[35, 36].
From the time dependent pairing equations (14), the

time derivatives of vΩ,m are provided and the next rela-
tion

i~
2 (v

∗
Ω′,m′(Ω,m)v̇Ω′,m′(Ω,m) − v̇∗Ω′,m′(Ω,m)vΩ′,m′(Ω,m))

= 2 | vΩ′,m′(Ω,m) |
2 (ǫΩ′,m′ − λ)− 2G | vΩ′,m′(Ω,m) |

4

+ℜ

{

∆∗
Ω,m

(

|vΩ′,m′(Ω,m)|
4

u
Ω′,m′(Ω,m)

v∗

Ω′,m′(Ω,m)

− uΩ′,m′(Ω,m)vΩ′,m′(Ω,m)

)}

,

(15)

is obtained. Therefore, the time derivative v̇Ω′,m′(Ω,m)

can be eliminated from Eqs. (13). Here, ∆Ω,m =
G
∑

(Ω′,m′) 6=(Ω,m) uΩ′,m′(Ω,m)vΩ′,m′(Ω,m) is the pairing

gap parameter of the configuration (Ω,m).
The equations (13), completed with the equality (15),

illustrate two inherent mixing mechanisms between dif-
ferent seniority one configurations that occur in dynam-
ical systems. The first one is the Coriolis interaction. In
an axial symmetric system, this interaction acts between
states that differ by one unit in the values of Ω. These
configurations mixing are produced by the non vanishing

matrix elements 〈Ω′,m′ |j±|Ω,m〉. The second mixing
mechanism is the Landau-Zener effect. The interaction
that causes this promotion mechanism manifests itself
only between single particle states that have the same
good quantum numbers in the avoiding crossing regions.
This effect is taken into consideration in the time depen-
dent equations by means of the interactions hΩ,m′,m. If
the pairing interaction vanishes, the system (13) can be
particularized to the time dependent equations of Ref.
[14] deduced only for single particle systems.
The energies of the many-body Hamiltonian H are

EΩ,m = 〈ϕIMΩm |H |ϕIMΩm〉 = 2
∑

(Ω′,m′) 6=(Ω,m) | vΩ′,m′(Ω,m) |
2 (ǫΩ′,m′ − λ) + (ǫΩ,m − λ)

−
|∆Ω,m|2

G −G
∑

(Ω′,m′) 6=(Ω,m) | vΩ′,m′(Ω,m) |
4,

(16)

and the centrifugal ones are

ER
I,Ω =

〈

ϕIMΩm

∣

∣

∣

~
2

2J

(

I2 − j2z
)

∣

∣

∣
ϕIMΩm

〉

= ~
2

2J

(

I(I + 1)− Ω2
)

, (17)

where |ϕIMΩm〉 are wave functions of the superposition
(2). Both energies intervene in the Eqs. (13).
In order to determine the probabilities of the possible

seniority one configurations stemming from the alpha de-
cay process, the system (13) should be solved, starting
from the ground state and reaching the scission. The
time dependent variables of our equations are the ampli-
tudes of the seniority one configurations and those of the
BCS functions. In the literature, the equations of mo-
tion are usually given in terms of probabilities. There-
fore, for completion the Eqs. (13) and (14) are also
re-casted in terms of probabilities instead of amplitudes
in the Appendix A. At scission, the the probabilities
PΩ,m = |cΩ,m|2 should give information compatible to
those deduced from the overlap probabilities for differ-
ent excited states (or seniority one configurations) of the
daughter [37, 38].

III. RESULTS AND DISUSSION

In order to solve the equations of motion, the rear-
rangement of the single particle levels ǫΩ,m should be
provided beginning from the ground state and reaching
the scission point. The time evolution of the mean field
potential is required for this purpose. In most treatments
of nuclear fission, this potential is constrained by a nu-
clear shape parametrization characterized by some de-
grees of freedom [39]. The generalized coordinates as-
sociated to these degrees of freedom are forced to vary
along a path in the multidimensional configuration space
leading finally to a split of the nuclear system [40] into
two bodies. A such fission trajectory can be obtained
according to the least action principle, by calculating
the minimal values of the action integral between the
ground state of the parent nucleus and a scission config-
uration compatible to the α-decay process. The action
integral requires the evaluation of the deformation energy
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FIG. 1. The deformation energy V as function of the inter-
nuclear distance R for α-decay. The height of the barrier is
renormalized by taking into account a zero point vibration
energy of 0.5 MeV.

FIG. 2. The Woods-Saxon potential VWS for the α-particle
emission as function of the axial cylindrical coordinate z is
displayed for several internuclear distances R. The internu-
clear distances are marked on the plots. The corresponding
nuclear shapes are also represented in the top of each panel.

and of the inertia. In this work, the deformation en-
ergy was computed in the framework of the macroscopic-
microscopic approach [41, 42], while the nuclear inertia
is calculated within the cranking model [43, 44]. In the
cranking model, the nucleons move freely in a mean field
potential subject to an external motion [45, 46]. In the
macroscopic-microscopic formalism it is postulated that a
macroscopic theory describes quantitatively the smooth
trends of the total nuclear energy with respect the de-
formations while the microscopic effects are responsible
for the local fluctuations. The macroscopic deformation
energy is calculated within the finite-range-liquid-drop
model [47, 48] extended for binary systems. The mi-
croscopic shell and pairing corrections were obtained by
mean of the Strutinsky procedure [49] based on a mean
field solved by the Woods-Saxon two center shell model
[23], using the so called universal parametrization for the
potential [50]. The orthogonal eigenvalues basis is ob-
tained by diagonalizing the Woods-Saxon mean field in
the semi-symmetric two center harmonic potential basis

FIG. 3. Neutron single particle energies as function of the
distance between the centers of the fragments R. The single
particle levels of the spherical parent nucleus are labeled with
their spectroscopic notations in the left side. After the scis-
sion produced at R ≈ 10 fm, the single particle levels of the
daughter nucleus are superimposed to the single particle level
belonging to the α-particle, labeled in the right side with the
spectroscopic notation 1s1/2.

FIG. 4. Proton single particle energies. The single particle
levels of the parent are labeled on the left with their spectro-
scopic notations. The single particle level pertaining to the
α-particle is marked on the right.
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FIG. 5. The variations of several single particle levels ǫΩ,m located around the Fermi energy as function of the internuclear
distance R are displayed in the panels (a), (d) and, (g). The spin projection of these levels is Ω =1/2. In each panel two
adjacent single particle levels are selected and are plotted with a thick line. They are labeled with their spectroscopic notations
corresponding to the parent in the left and to the daughter in the right. The differences in energies ∆ǫ = ǫΩ,m − ǫΩ,m−1

are plotted on the panels (b), (e), and (h) for the two adjacent single particle levels selected in the panels (a), (d), and (g),
respectively. Minimum values of these differences should locate the avoided crossing regions. These minimums are marked with
arrows. The total intrinsic spin jΩ,m of the single particle levels selected in the panels (a), (d), and(g), are displayed in the
panels (c), (f), and (i), respectively. The total intrinsic spin corresponding to the superior single particle level is plotted with
a thick line. The arrows indicate the location of the avoided levels crossing regions. The values of jΩ,m intersect in the same
regions in panels (f) and (i).

[51–53]. The matrix elements for the derivative of the
potential required to calculate the inertia are also ob-
tained with the same wave functions. For a fixed major
quantum number, the two center shell model provides
the lower energy single particle wave functions for any
internuclear distance between two separated fragments.
Molecular states that characterize scission configurations
can be precisely described. Due to this advantage, dif-
ferent versions of two center shell model are used in the
literature to treat processes like nuclear disintegrations
or collisions [54–56]. Our nuclear shape parametrization
should provide a smooth transition between one parent
nucleus and a two bodies nuclear configuration. This be-

havior is obtained with an axial symmetric nuclear shape
parametrization given by two spheroids joined by an in-
termediate surface simulating the neck [23]. This inter-
mediate surface is obtained by rotating an arc of circle
tangent on both spheroids around the axis of symmetry.
Five degrees of freedom characterize this nuclear shape
parametrization: the elongation defined by the internu-
clear distance R between the centers of the spheroids, the
necking parameter that can be measured by the curva-
ture C = s/R3 of the intermediate surface, (R3 and s
being the radius of the arc of circle and the sign of the
curvature, respectively), the mass asymmetry that can
be considered as the ratio of the major semi-axes of the



8

two spheroids, and the deformations of both fragments
characterized by their eccentricities. The minimization of
the action integral is performed numerically as described
in Ref. [57]. First of all, the ground state of the parent is
determined by calculating the lowest deformation energy,
while the scission point is considered as the touching con-
figuration of a dinuclear system consisting of the spheri-
cal nuclei 207Pb and 4He. The elongations for the initial
and the final configurations are therefore established. We
define a trajectory between these points that is approxi-
mated by a spline function. This spline function depends
on several values of the generalized coordinates in dif-
ferent mesh points fixed along the elongation parameter.
So, the action integral in the WKB approximation [40]
becomes now a function that depends on the values of
the generalized coordinates considered as variables. A
numerical minimization can be now performed to ob-
tain the least action trajectory. Such kind of calculations
were already performed for fission [58–60], cluster emis-
sion [61, 62] and α-decay [63, 64]. The potential barrier
V for α-decay along the least action trajectory is plotted
in Fig. 1. A pocket in the potential is formed around the
scission configuration. The origin of this pocked was ex-
plained in Ref. [64]. The strong stabilizing shell effects of
the nearly spherical daughter produce a molecular min-
imum where the α-particle is preformed on the surface.
A similar potential pocked was introduced phenomeno-

TABLE I. Selected transition levels around the Fermi energy.
The initial and final orbitals, the projections of the intrinsic
spin Ω are presented in the first three columns, respectively.
The single particle level Ω=3/2 emerging from 1i11/2 reaches
the 1p3/2 state of the α-particle. The last column display the

probabilities PΩ,m =| cΩ,m |2 of the configurations (Ω,m) for
a internuclear velocity v = 2 × 104 fm/fs at an elongation
R=10.5 fm.

Initial state Final state Ω PΩ,m

1i11/2 2g9/2 1/2 0.102
2g9/2 3p1/2 1/2 9.553×10−2

3p1/2 2f5/2 1/2 7.865×10−2

2f5/2 3p3/2 1/2 8.323×10−2

1i13/2 2f7/2 1/2 1.898×10−5

1i11/2 1p3/2-α 3/2 0.207
2g9/2 2g9/2 3/2 0.1621
2f5/2 2f5/2 3/2 1.965×10−3

3p3/2 3p3/2 3/2 1.952×10−2

1i13/2 1i13/2 3/2 2.067×10−3

1i11/2 1i11/2 5/2 0.1468
2f5/2 2f5/2 5/2 5.353×10−3

1i11/2 1i11/2 7/2 9.661×10−2

2g9/2 2g9/2 7/2 4.570×10−2

1i13/2 1i13/2 7/2 1.162×10−8

1i11/2 1i11/2 9/2 4.331×10−2

2g9/2 2g9/2 9/2 4.841×10−3

1i13/2 1i13/2 9/2 3.396×10−11

1i11/2 1i11/2 11/2 3.977×10−8

1i13/2 1i13/2 11/2 4.701×10−11

logically in Ref. [65] in order to improve the agreement
between theory and experimental α decay widths. In the
presence of the potential pocket displayed in Fig. 1, the α
decay potential barrier resembles formally to the double-
humped barrier encountered in fission. In fission, the
double humped barrier is responsible for the β vibrational
transitions created by collective resonances in the second
minimum. Speculating this similarity, it is also possi-
ble to consider that the pure α-cluster states obtained
experimentally from non-natural transitions in Ref. [66]
could be due to collective vibrational resonances in the
α-decay second well of the potential. The Woods-Saxon
potentials and the corresponding nuclear shapes during
the decay process are displayed in Fig. 2. As mentioned,
the same ’universal’ Woods-Saxon parametrization was
used for the parent nucleus, the daughter one and for the
α-particle.
The single particle diagrams as function of the elonga-

tion R are displayed in Fig. 3 for neutron and in Fig.
4 for proton. The ground state is located around at
Rgs ≈ 0.8 fm. The single particle states of the 211Po
nucleus considered spherical are assigned on the left with
their spectroscopic notations. At an elongation Rs of
about 10 fm, a dinuclear system consisting of the 207Pb
spherical daughter nucleus and the α-particle is obtained.
Accordingly, the single particle levels are rearranged as
function of the internuclear distance R, resulting a su-
perposition of the single particle level belonging to the
α-particle (marked with 1s1/2 in the right of the Figs. 3
and 4) with the single particle level scheme of the daugh-
ter. In the case of proton, the electrostatic repulsion
between the formed nuclei leads to a decrease of the sin-
gle particle energies when the nuclei get away one from
another. The slope for the variation of the single particle
energy of the α-particle is more evident than those be-
longing to the daughter nucleus. As displayed in Fig. 3
concerning the neutron diagram, the single particle level
emerging from the parent state 2d5/2 with the spin pro-
jection Ω=1/2 arrives asymptotically to the orbital 1s1/2,
centered in the potential well of the α-particle. That is,
during the rearrangement of the level diagram, one sin-
gle particle level is extracted from the parent nucleus
to constitute the α particle. Therefore, the daughter fi-
nal state Ω=1/2 of the orbital 2d5/2 should be filled by
superior levels belonging to the same Ω=1/2 subspace.
That is, the superior Ω=1/2 level should replace in the
daughter fragment the single particle level extracted by
the α-particle. Indeed, the single particle level emerg-
ing from the parent 2d3/2 replaces the 2d5/2 orbital of
the daughter. Successive replacements are produced up
to a complete filling of all orbitals of the daughter nu-
cleus. The evolutions as function of R of some selected
neutron single particle levels around the Fermi energy,
and hence participating to the mixing configuration pro-
cess, are presented in Fig. 5. All these levels pertain
to the subspace Ω=1/2. Their variation illustrates how
the successive replacements are produced by filling free
orbitals of the daughter at scission. In panel (a) of Fig.
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5, it can be observed that the neutron located in last oc-
cupied orbital of the parent nucleus denoted 2g9/2 will
arrive adiabatically after the emission of the α-particle
on the state 3p1/2 of the daughter. In the same time, the
superior single particle level emerging from 1i11/2 reaches
the state 2g9/2. In the panels (d) and (g), in a similar
manner the levels emerging from 3p1/2 and 2f5/2 will be
finally located in the states 2f5/2 and 3p3/2 of the daugh-
ter nucleus, respectively. During the rearrangements of
these single particle levels, some avoided levels crossing
regions should be produced. Such regions could be iden-
tified by evaluating the differences between the energies
of two adjacent single particle levels ∆ǫ = ǫω,m− ǫΩ,m−1.
In general, the avoided levels crossing regions are charac-
terized by some minimal values of these differences. Such
differences are plotted in panels (b), (e), and (h), corre-
sponding to the levels selected on left side of the figure.
The possible avoided levels crossing regions are marked
with arrows. In order to confirm the fact that these min-
imums identifies avoided levels crossing regions without
ambiguities, we calculated also the total intrinsic spins
spin jΩ,m of the microscopic states (Ω,m) [from the equa-
tion jΩ,m(jΩ,m + 1) = 〈Ω,m | j2 | Ω,m〉]. The variation
of the total intrinsic spin is plotted in the panels (c), (f),
and (i). In a true avoided levels crossing region, the lev-
els should exchange their characteristics. For example in
atomic physics, a pure polar electron state can become
homopolar after the passage of an avoided crossing, as
remarked by Zener [21]. As pointed by the arrows, the
avoided levels crossing regions are located at the same
internuclear distances as the intersections of the values
of the total intrinsic spins jΩ,m in panels (f) and (i). No
intersections can be noticed in the panel (c), therefore
we conclude that the minimums marked with arrows in
the panel (b) are not consistent with the existence of
avoided levels crossing regions. Moreover, the initial and
final values of the total intrinsic spin are consistent with
the spectroscopic notations used to label the initial and
the final states of the single particle levels. The formal-
ism of for the ladder operators in the framework of the
Woods-Saxon two center shell model is given in Ref. [44].
The magnitude of the interaction in the avoided levels

crossing regions is evaluated as described in Ref. [24].
By using some interpolation procedures, the behavior of
the diabatic single particle levels can be determined. The
energy differences between the adiabatic and the diabatic
states offer an estimation for the Landau-Zener interac-
tion.
The unpaired nucleon, initially emerging from the state

2g9/2 with Ω=1/2 will traverse mainly two avoided levels
crossing regions: the region located at R ≈ 8.77 fm be-
tween the adiabatic levels emerging from 2g9/2 and 3p1/2
and, another one located at R ≈ 9.97 fm between the adi-
abatic levels emerging from 3p1/2 and 2f5/2. If the nu-
cleon follows diabatic states, it will skip from one single
particle level to another in each avoided levels crossing
region. That is, for large internuclear velocities Ṙ, the
nucleon initially located in the parent state 2g9/2 should

arrive with a very large probability on the final daughter
state 3p3/2. For small internuclear velocities, the nucleon
should follow adiabatically the same single particle level,
to arrive on the final state 3p1/2 of the daughter nucleus.
In this situation, we retrieve the ground state configura-
tion of the daughter nucleus. For intermediate velocities,
all the three final states 3p1/2, 2f5/2, and 3p3/2 can be
occupied with different probabilities by the unpaired nu-
cleon. These probabilities can be obtained by solving the
system of equations of motion (13).
We selected several single particle levels around the

Fermi energy in order to investigate the mixing configu-
ration mechanism, that are tabulated in Table I. Except-
ing the internuclear velocity, all the ingredients required
to solve the equations (13) are available, being supplied
by the variations of the single particle energies or calcu-
lated in terms of the wave functions that resort form the
Woods-Saxon two center shell model. Only the internu-
clear velocity ∂R/∂t is missing. Different values of the
internuclear velocities ranging from 104 to 106 fm/fs were
tested to reproduce the fine structure and to estimate the
disintegration time.
In the external region, the two nuclei move away from

each other. The momentum of inertia increases pro-
portionally with the square of the internuclear distance.
Therefore the Coriolis interaction becomes very small.
In the external region as well, the single particle energies
remain unchanged and we do not have anymore avoided
levels crossing regions. From these reasons, configuration
changes are no longer produced.
The fine structure of 211Po α-decay is characterized

by 98.9% transitions to the 3p1/2 ground state of the
daughter, 0.55% to the 2f5/2 first single-particle excited
state, and 0.54% to the 3p3/2 second single-particle ex-
cited state [67, 68]. The ground state configuration of
the parent nucleus 211Po is [π(h9/2)

2ν(g9/2)
1]9/2+ [69].

So, the unpaired neutron emerges from the level 2g9/2
and the total spin of the system is I = 9/2 ~.
The system (13) is solved by starting from the 211Po

ground state, located at Rgs ≈0.8 fm, and arising the
scission point Rs ≈10 fm. For the seniority one con-
figurations (Ω,m) listed in Table I, the initial occupa-
tion vΩ′,m′(Ω,m) and vacancy uΩ′,m′(Ω,m) amplitudes cor-
respond to the respective solutions of the BCS station-
ary equations. The initial amplitude is cΩ=1/2,3p1/2

=1

for the seniority one configuration in which the Ω=1/2
blocked level emerges from the 2g9/2 parent orbital and
reaches the 3p1/2 daughter orbital. This corresponds to a
transition between the ground state of the parent nucleus
to the ground state of the daughter one. The amplitudes
cΩ,m for the remaining configurations are initially con-
strained to be zero. The system (13) is solved for differ-
ent values of the internuclear velocities. We obtained the
amplitudes cΩ,m for the realization of different (Ω,m) se-
niority one configurations as function of the elongation.
The absolute square PΩ,m =| cΩ,m |2 at the scission Rs

have a similar meaning as the overlap probability for fi-
nal excitations (Ω,m). The Eqs. (13) conserve the total
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TABLE II. Yields Y for the fine structure in percents for different values of the internuclear velocity v. The spectroscopic
notations label the final state of the daughter (or of the emitted particle).

v Y1i11/2 Y2g9/2 Y3p1/2 Y2f5/2 Y3p3/2 Y1i13/2 Y2f7/2 Y1p3/2α

(fm/fs) (%) (%) (%) (%) (%) (%) (%) (%)
0.9×104 1.28×10−21 1.21×10−14 85.38 2.97 11.63 2.98×10−4 4.88×10−19 1.5×10−22

2×104 1.41×10−23 2.34×10−15 99.10 0.26 0.62 8.25×10−4 7.62×10−18 2.30×10−24

3×104 9.85×10−22 4.08×10−13 99.66 1.59×10−2 0.32 3.69×10−4 3.47×10−18 1.84×10−22

4×104 3.69×10−24 4.69×10−16 97.89 1.20 0.89 2.34×10−3 2.25×10−19 6.30×10−25

probability, as it can be verified from Table I, the sum
over the considered single particle levels satisfying the
condition

∑

PΩ,m = 1.
The partial half-life for one transition state pertain-

ing to a seniority one configuration (Ω,m) is inversely
proportional to its barrier penetrability P b

Ω,m and to its

probability to obtain the configuration PΩ,m =| cΩ,m |2

at scission [70]

TΩ,m ∝
(

P b
Ω,mPΩ,m

)−1
. (18)

The penetrability of the barrier is determined in the
WKB approximation as

P b
Ω,m = exp

{

−
2

~

∫ Re

Rs

√

2B(R)[V (R) + (EΩ,m(R)− E1/2,3p1/2
) + ER

I,Ω]dR

}

. (19)

As mentioned, the value of the total orbital momen-
tum is I=9/2 ~, corresponding to the parent ground
state. It determines the centrifugal term ER

I,Ω given

with the expression (17). V is the deformation en-
ergy in the macroscopic-microscopic formalism, displayed
in Fig. 1. E1/2,3p1/2

is the lowest transition state of

the decaying system, pertaining to the Ω =1/2 Fermi
level emerging from the ground state of the parent 2g9/2
and reaching the ground state of the daughter 3p1/2.
The other transition states have barriers increased by
their specialization energies [71], given by the differences
EΩ,m(R) − E1/2,3p1/2

. Because the energies calculated

with the expression (16) contain BCS parameters that
are solutions of the system (14), then the effect of the
dissipated energy is included in these differences [28].
The dissipation means a transfer of energy or angular
momentum from collective degrees of freedom into inter-
nal ones [72]. The integral is made between the scission
point Rs and the exit point of the barrier Re, that de-
pends on the transition state. B is the effective mass
along the superasymmetric fission trajectory, evaluated
in the framework of the cranking model.
The 207Pb daughter nucleus is considered spherical.

So, the single particle states are degenerate in the intrin-
sic spin projection Ω. The partial half-life for only one
excitation m of the daughter nucleus considered spheri-
cal is given by the contributions of all transition states
of different spin projections Ω that reach the same de-
generated seniority one configuration. That is, the par-
tial half-life for one final excitation m in the spherical

daughter nucleus is given by the formula

1

Tm
=

∑

Ω

1

TΩ,m
. (20)

For example, the partial half-life for the final daughter
state 2g9/2 can be calculated as

1
T2g9/2

= 1
T1/2,2g9/2

+ 1
T3/2,2g9/2

+ 1
T5/2,2g9/2

+ 1
T7/2,2g9/2

+ 1
T9/2,2g9/2

,
(21)

within the seniority one configurations selected in table
I. The yield for the final configuration 2g9/2 is Y2g9/2 =

T/T2g9/2 × 100 in percents, where T is the total half-life.
Now, the yields of the fine structure can be obtained in
the same way for other excited states of the daughter
nucleus. The partial half-life for the ground state of the
daughter is given only by the transition to the 3p1/2 state
of the single particle level with spin projection Ω=1/2
emerging from the parent orbital 2g9/2.
Several values for the internuclear velocity v = dR/dt

were tested in order to reproduce the fine structure pa-
rameters. The value v = 2 × 104 fm/fs gives the best
agreement between the theory and the experiment. The
probabilities of the seniority one configurations are listed
in Table I. The yields obtained theoretically are pre-
sented in Table II, together with the results obtained for
other velocities. We obtained theoretically 99.1% transi-
tions to the ground state, 0.26% transitions to the first
excited state and 0.62% transitions to the second excited
state. It is interesting to note that the theory also pre-
dicts the emission of 5He with a very small probability.
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The agreement between the experimental data and the
theory is very good, having in mind that the parame-
ters of the model are not adjusted at all. The Q-value,
the single particle energies are given by the Woods-Saxon
two center shell model alone. The time to penetrate the
barrier is about 1.7×10−18 s, leading to a very large dis-
integration time.
In fission, the scission time is still a subject of debate.

For example, as discussed in Ref. [44], some Hartree-Fock
calculations predict mean velocities around the scission
point of the order 1× 106 fm/fs [33, 73, 74], while mod-
els that take into considerations state dependent pairing
interactions gives values of the order of 6× 104− 2× 105

fm/fs [75]. A good agreement between the experimental
value of the spontaneous fission half life and the theoy
was obtained for a mean velocity 1 × 105 in Ref. [44].
A similar situation can be encountered in the case of the
alpha-decay process. The time scale predictions for the α
tunneling are model dependent. For example, in Ref. [76]
it was calculated that the time spend by the nuclear sys-
tem before entering the barrier and the half-life of the α
decay are of the same order of magnitude. That is, very
slow processes can be considered. On the other hand,
the tunneling velocity deduced in Ref. [77] by solving
the time dependent Schrodinger equation for metastable
initial states are of the order of 107 fm/fs.

IV. CONCLUSIONS

A new system of equations of motion are deduced from
the variational principle. These equations can be easily
particularized to the time dependent pairing equations
if the configuration mixing mechanism is neglected. As
noticed in Ref. [23], these equations can be also partic-
ularized to the Landau-Zener differential equations for
pure single particle systems, when the pairing interac-
tion and the Coriolis coupling are neglected. When only
the pairing interaction is neglected, the system of equa-
tions presented in Ref. [14] is retrieved. Therefore, this
new system of equations represents a generalization of
the time dependent pairing equations able to mix senior-
ity one configurations. The probability to obtain a given
configuration is determined dynamically.
These equations are solved for a simple case, the α

decay of 211Po in order to explain the fine structure phe-
nomenon. A very good agreement between the theory
and the experiment was obtained. A mean value of the
tunneling velocity of about v = 2 × 104 fm/fs was pre-
dicted. The calculations show that the emission of 5He
is also possible with a very small probability.
Usually, the favored transitions in the α-decay of odd

nuclei proceed to daughter states with the same quantum
numbers as the parent ones. In the case of the 211Po α-
decay, the transitions to the ground state are favored due
to the Landau-Zener promotion mechanism. Concerning
the proton single particle diagram displayed on Fig. 4,
it can be noticed that an avoided levels crossing region

occurs at R ≈8 fm and E = −6.5 MeV between two sin-
gle particle levels with the same value Ω =1/2. These
levels emerge from the parent orbitals 1h9/2 and 3s1/2.
The Landau-Zener promotion mechanism can also be re-
sponsible for the enhanced branch 9/2− → 1/2+ in the
α-decay of 211Bi.
In our treatment, the α-decay is considered as a su-

perasymmetric fission process. That is, a fission path
is calculated in an multidimensional configuration space,
paying attention to the structure aspects of the potential
energy and to the variations of the inertia up to the scis-
sion configuration. The variation of the nuclear structure
is analyzed during the whole disintegration process and
dynamical single particle effects are evidenced. They are
several models in the literature where it is claimed that
the α decay is treated like a fission process. In all these
approaches, the ground state of the parent is defined only
from an energy point of view, by reproducing only the ex-
perimental Q-value of the reaction, readjusted by an zero
point vibration energy. No deformations are associated
to this parent ground state. The variation of the de-
formation energy is usually fitted in a rudimentary way
by using some interpolating functions in order to repro-
duce the height of the Coulomb barrier at scission. In
some models, finite range nuclear terms are also used to
improve the energy around the scission configuration, as
for example the proximity potential [78] or the Yukawa
plus exponential surface term [79]. Sometimes, the liquid
drop energy is used to evaluate the variation of the de-
formation energy in the overlap region by involving very
simple nuclear shape parametrizations, but phenomeno-
logical shell corrections are introduced to reproduce the
Q-value [80]. These kinds of approaches consider that
the effective mass in the overlap region is equal to the re-
duced mass where the two fragments are separated. The
major part of the penetrability calculated for α-decay is
obtained from the external region, the overlap region be-
ing on little importance. For two separated bodies, only
the Coulomb field and the reduced mass intervene. Be-
cause the height of the external barrier being fixed by the
experimental Q-value, in principle, the systematic behav-
ior of calculated half-lives should be in agreement with
the experimental ones. Indeed, many practical formula
for α half-lives systematics are based on very simple for-
mulas involving the Q-value [81–83]. It is true that also
in fission it is possible to introduce some double humped
parametrized barriers in order to estimate the heights of
the barriers. But, due to the fact that the scission point
is located in the external region of the barrier, it is not
possible to rely this barrier on the Q-value to estimate
the half-life of the process. So, in fission treatments the
variations of the energy and of the mass in the overlap
regions is of crucial importance and determine the spon-
taneous half-life. In a true fission-like model, the overlap
region should be investigated carefully and its properties
should be calculated. In our dynamical treatment in the
framework of the superasymmetric fission model, we take
into account the properties of the parent ground state,
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the variation of the deformation energy (including cor-
rections due to the structure) and of the inertia along
the fission path. So, our treatment for α decay is really
a fission-like one.

ACKNOWLEDGMENTS

This work was supported by the grants of Ministery
of Research and Innovation, CNCS-UEFISCDI, project

numbers PN-III-P4-ID-PCE-2016-0092 and PN-III-P4-
ID-PCE-2016-0014, within PNCDI III.

Appendix A

The Eqs. (14) can be rewritten in terms of single parti-
cle densities ρΩ,m(Ω′,m′) = |vΩ,m(Ω′,m′)|

2 and pairing mo-
ment components κΩ,m(Ω′,m′) = uΩ,m(Ω′,m′)vΩ,m(Ω′,m′)

as

i~ρ̇Ω,m(Ω′,m′) = κΩ,m(Ω′,m′)∆
∗
Ω,m − κ∗

Ω,m(Ω′,m′)∆Ω,m,

i~κ̇Ω,m(Ω′,m′) =
(

2ρΩ,m(Ω′,m′) − 1
)

∆Ω,m + 2κΩ,m(Ω′,m′) (ǫΩ,m − λ)− 2GρΩ,m(Ω′,m′)κΩ.m(Ω′,m′).
(A1)

Similarly, the Eqs. (13) can be rewritten in terms of the probabilities PΩ,m = |cΩ,m|2 of the configurations (Ω,m)
and the mixing moment components between configurations S(Ω,m)(Ω′,m′) = cΩ,mc∗Ω′,m′ . These equations are:

i~ṖΩ,m = − ~
2

2J

{

∑

m′

[

S(Ω,m)(Ω+1,m′) − S(Ω+1,m′)(Ω,m)

]

((I − Ω)(I +Ω + 1))
1/2

×

[
√

|κΩ,m(Ω+1,m′)|
2

ρΩ,m(Ω+1,m′)

|κΩ+1,m′(Ω,m)|
2

ρΩ+1,m′(Ω,m)
+ κ∗

Ω,m(Ω+1,m′)κΩ+1,m′(Ω,m)

√

ρΩ,m(Ω+1,m′)

|κΩ,m(Ω+1,m′)|
2

ρΩ+1,m′(Ω,m)

|κΩ+1,m′(Ω,m)|
2

]

×
〈

Ω+ 1,m′
∣

∣j+
∣

∣Ω,m
〉

TΩ+1,m′,Ω,m

+
∑

m′

[

S(Ω,m)(Ω−1,m′) − S(Ω−1,m′)(Ω,m)

]

((I +Ω)(I − Ω+ 1))
1/2

×

[
√

|κΩ,m(Ω−1,m′)|
2

ρΩ,m(Ω−1,m′)

|κΩ−1,m′(Ω,m)|
2

ρΩ−1,m′(Ω,m)
+ κ∗

Ω,m(Ω−1,m′)κΩ−1,m′(Ω,m)

√

ρΩ,m(Ω−1,m′)

|κΩ,m(Ω−1,m′)|
2

ρΩ−1,m′(Ω,m)

|κΩ−1,m′(Ω,m)|
2

]

×
〈

Ω− 1,m′
∣

∣j+
∣

∣Ω,m
〉

TΩ−1,m′,Ω,m

}

+
∑n

Ω,m′ hΩ,m′,m

[

S(Ω,m)(Ω,m′) − S(Ω,m′)(Ω,m)

]

,

(A2)

and,
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i~Ṡ(Ω,m)(Ω1,m1)
= S(Ω,m)(Ω1,m1)

{

~
2

2J (Ω
2 − Ω2

1) +− 1
G

(

| ∆Ω1,m1
|2 − | ∆Ω,m |2

)

+(ǫΩ1,m1
− ǫΩ,m − 2λ)

+G
(

∑

(Ω′,m′) 6=(Ω1,m1)
ρ2Ω′,m′(Ω1,m1)

−
∑

(Ω′,m′) 6=(Ω,m) ρ
2
Ω′,m′(Ω,m)

)

−
∑

(Ω′,m′) 6=(Ω1,m1)
ℜ

[

∆∗
Ω1,m1

(

ρ2
Ω′,m′(Ω1,m1)

κ∗

Ω′,m′(Ω1,m)

− κΩ′,m′(Ω1,m1)

)]

+
∑

(Ω′,m′) 6=(Ω,m) ℜ

[

∆∗
Ω,m

(

ρ2
Ω′,m′(Ω,m)

κ∗

Ω′,m′(Ω,m)

− κΩ′,m′(Ω,m)

)]}

+ ~
2

2J

{

∑

m′ S(Ω+1,m′)(Ω1,m1)
((I − Ω)(I +Ω+ 1))

1/2

×

[
√

|κΩ,m(Ω+1,m′)|
2

ρΩ,m(Ω+1,m′)

|κΩ+1,m′(Ω,m)|
2

ρΩ+1,m′(Ω,m)
+ κ∗

Ω,m(Ω+1,m′)κΩ+1,m′(Ω,m)

√

ρΩ,m(Ω+1,m′)

|κΩ,m(Ω+1,m′)|
2

ρΩ+1,m′(Ω,m)

|κΩ+1,m′(Ω,m)|
2

]

×
〈

Ω+ 1,m′
∣

∣j+
∣

∣Ω,m
〉

TΩ+1,m′,Ω,m

+
∑

m′ S(Ω−1,m′)(Ω1,m1)
((I +Ω)(I − Ω + 1))

1/2

×

[√

|κΩ,m(Ω−1,m′)|
2

ρΩ,m(Ω−1,m′)

|κΩ−1,m′(Ω,m)|
2

ρΩ−1,m′(Ω,m)
+ κ∗

Ω,m(Ω−1,m′)κΩ−1,m′(Ω,m)

√

ρΩ,m(Ω−1,m′)

|κΩ,m(Ω−1,m′)|
2

ρΩ−1,m′(Ω,m)

|κΩ−1,m′(Ω,m)|
2

]

×
〈

Ω− 1,m′
∣

∣j−
∣

∣Ω,m
〉

TΩ−1,m′,Ω,m

}

− ~
2

2J

{

∑

m′ S(Ω,m)(Ω1+1,m′) ((I − Ω1)(I +Ω1 + 1))
1/2

×

[√

|κΩ1,m1(Ω1+1,m′)|
2

ρΩ1,m1(Ω1+1,m′)

|κΩ1+1,m′(Ω1,m1)|
2

ρΩ1+1,m′(Ω1,m1)
+ κ∗

Ω1,m1(Ω1+1,m′)κΩ1+1,m′(Ω1,m1)

√

ρΩ1,m1(Ω1+1,m′)

|κΩ1,m1(Ω1+1,m′)|
2

ρΩ1+1,m′(Ω1,m1)

|κΩ1+1,m′(Ω1,m1)|
2

]

×
〈

Ω1 + 1,m′
∣

∣j+
∣

∣Ω1,m1

〉

TΩ1+1,m′,Ω1,m

+
∑

m′ S(Ω,m)(Ω1−1,m′) ((I +Ω1)(I − Ω1 + 1))
1/2

×

[√

|κΩ1,m1(Ω1−1,m′)|
2

ρΩ1,m1(Ω1−1,m′)

|κΩ1−1,m′(Ω1,m1)|
2

ρΩ1−1,m′(Ω1,m1)
+ κ∗

Ω1,m1(Ω1−1,m′)κΩ1−1,m′(Ω1,m1)

√

ρΩ1,m1(Ω1−1,m′)

|κΩ1,m1(Ω1−1,m′)|
2

ρΩ1−1,m′(Ω1,m1)

|κΩ1−1,m′(Ω1,m1)|
2

]

×
〈

Ω1 − 1,m′
∣

∣j−
∣

∣Ω1,m1

〉

TΩ1−1,m′,Ω1,m

}

+
∑n

(Ω′,m′) 6=(Ω,m),(Ω1,m1)
hΩ1,m1,m′S(Ω,m)(Ω,m′)

−
∑n

(Ω′,m′) 6=(Ω,m),(Ω1,m1)
hΩ,m′,mS(Ω1,m′)(Ω1,m1)

+hΩ,m1,m
PΩ,m − hΩ,m,m1)

PΩ,m1
.

(A3)

[1] G. Ropke, P. Schuck, Y. Funaki, H. Horiuchi, Zhongzhou
Ren, A. Tohsaki, Chang Xu, T. Yamada, and Bo Zhou,
Phys. Rev. C 90, 034304 (2014).

[2] G. Ropke P. Schuck, C. Xu, Z. Ren, M. Lyu, B. Zhou,
Y. Funaki, H. Horiuchi, A. Tohsaki, and T. Yamada, J.
Low Temp. Phys. in press (2017) DOI 10.1007/s10909-
017-1796-9.

[3] D. Deng, Z. Ren, D. Ni, and Y Qian, J. Phys. G 42,
075106 (2015).

[4] M. Mirea, Eur. Phys. J. A 51, 36 (2015).
[5] H. J. Mang, Z. Phys. 148, 528 (1957).
[6] S. Rosenblum, C. R. Acad. Sci. Paris 188, 1401 (1929).
[7] E. Segre, in Nuclei and Particle ( Benjamin, New York,

1964) Chap. 7, p. 279.
[8] S. Peltonen, D.S. Delion, and J. Suhonen, Phys. Rev. C

71, 044315 (2005).
[9] D.S. Delion, in Theory of Particle and Cluster Emission,

(Springer, Berlin, 2010) Lecture Notes in Physics 819.
[10] J.O. Rasmussen and B. Segal, Phys. Rev. 103, 1298

(1956).
[11] A. Sandulescu and M. Iosifescu, Nucl. Phys. 26, 209

(1961)
[12] D.S. Delion, S. Peltonen, and J. Suhonen, Phys. Rev. C

73, 014315 (2006).

[13] D.L. Hill and J.A. Wheeler, Phys. Rev. 89, 1102 (1953).
[14] M. Mirea, Phys. Rev. C 63, 034603 (2001).
[15] A. Thiel, J. Phys. G 16, 867 (1990).
[16] J.Y. Park, W. Greiner, and W. Scheid, Phys. Rev. C 21,

958 (1980).
[17] A. Bohr and B.R. Mottelson, in Nuclear Structure, Vol

II Nuclear Deformations, (World Scientific, Singapore,
1998) Appendix 4A, p. 199.

[18] E. Osnes, J. Rekstad, and O.K. Gjotterud, Nucl. Phys.
A253, 45-54 (1975).

[19] J. Rekstad, T. Engeland, and E. Osnes, Nucl. Phys.
A330, 367-380 (1979).

[20] L.D. Landau, Phys. Z. Sowjet. 2, 46 (1932).
[21] C. Zener, Proc. R. Soc. A 137, 696 (1932).
[22] M. Mirea, Mod. Phys. Lett. A 19, 1809 (2003).
[23] M. Mirea, Phys. Rev. C 78, 044618 (2008).
[24] W. Greiner, J. Y. Park, and W. Scheid, in Nuclear

Molecules (World Scientific, Singapore, 1995) Chap. 11.
[25] M. Mirea, Phys. Lett. B 680, 316 (2009).
[26] M. Mirea, Phys. Rev. C 89, 034623 (2014).
[27] R. Bernard, H. Goutte, D. Gogny, and W. Younes, Phys.

Rev. C 84, 044308 (2011).
[28] S.E. Koonin and J.R. Nix, Phys. Rev. C 13, 209 (1976).
[29] J. Blocki and H. Flocard, Nucl. Phys. A273, 45 (1976).



14

[30] B. Avez, C. Simenel, and Ph. Chomaz, Phys. Rev. C 78,
044318 (2008).

[31] S. Ebata, T. Nakatsukasa, T. Inakura, K. Yoshida, Y.
Hashimoto, and K. Yabana, Phys. Rev. C 82, 034306
(2010).

[32] J.W. Negele, S.E. Koonin, P. Moller, J.R. Nix, and A.J.
Sierk, Phys. Rev. C 17, 1098 (1978).

[33] G. Scamps, C. Simenel, and D. Lacroix, Phys. Rev. C
92, 011602(R) (2015).

[34] Y. Tanimura, D. Lacroix, and G. Scamps, Phys. Rev. C
92, 034601 (2015).

[35] M. Mirea, Phys. Rev. C 83, 054608 (2011).
[36] M. Mirea, Phys. Lett. B 717, 252 (2012).
[37] D.N. Poenaru and W. Greiner, J. Phys. G 17, S443

(1991).
[38] A. Zdeb, M. Warda, and K. Pomorski, Phys. Rev. C 87,

024308 (2013).
[39] H.C. Pauli, Phys. Rep. 7, 35 (1973).
[40] M. Brack, J. Damgaard, A. Jensen, H. Pauli, V. Struti-

nsky, and W. Wong, Rev. Mod. Phys. 44, 320 (1972).
[41] J.R. Nix, Ann. Rev. Nucl. Sci. 20, 65 (1972).
[42] W. J. Swiatecki and S. Bjornholm, Phys. Rep. 4, 325

(1972).
[43] T. Lederberger and H.C. Pauli, Nucl. Phys. A207, 1

(1973).
[44] M. Mirea, J. Phys. G 43, 105103 (2016).
[45] D.R. Inglis, Phys. Rev. 96, 1059 (1954).
[46] D.R. Inglis, Phys. Rev. 97, 701 (1955).
[47] K.T.R. Davies and J.R. Nix, Phys. Rev. C 14, 1977

(1976).
[48] P. Moller, J.R. Nix, W.D. Myers, and W.J. Swiatecki,

At. Data Nucl. Data Tables 59, 185 (1995).
[49] V.M. Strutinsky, Nucl. Phys. A95, 420 (1967).
[50] S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, and .

Werner, Comput. Phys. Comm. 46, 379 (1987).
[51] J. Maruhn and W. Greiner, Z. Phys. 251, 431 (1972).
[52] M. Mirea, Phys. Rev. C 54, 302 (1996).
[53] M. Mirea, Nucl. Phys. A780, 13 (2006).
[54] Y. Aritomo and S. Chiba, Phys. Rev. C 88, 044614

(2013).
[55] A. Diaz-Torres and W. Scheid, Nucl. Phys. A757, 372

(2005).
[56] A. Diaz-Torres, Phys. Rev. Lett. 101, 122501 (2008).
[57] M. Mirea, R. Budaca, and A. Sandulescu, Ann. Phys.

(N.Y.) 380, 154 (2017).
[58] M. Mirea, D.S. Delion, and A. Sandulescu, Proc. Rom.

Acad. Series A 18, 50 (2017).
[59] A. Sandulescu and M. Mirea, Eur. Phys. J A 50, 110

(2014).

[60] M. Mirea, D.S. Delion, and A. Sandulescu, Phys. Rev. C
81, 044317 (2010).

[61] M. Mirea, A. Sandulescu, and D.S. Delion, Nucl. Phys.
A870-871, 23 (2011).

[62] M. Mirea, A. Sandulescu, and D.S. Delion, Eur. Phys. J.
A 48, 86 (2012).

[63] M. Mirea, Rom. J. Phys. 60, 156 (2015).
[64] A. Sandulescu, M. Mirea, and D.S. Delion, EPL 101,

62001 (2013).
[65] D.S. Delion and R.J. Liotta, Phys. Rev. C 87, 041302(R)

(2013).
[66] A. Astier, P. Petkov, M.-G. Porquet, D.S. Delion, and P.

Schuck, Eur. Phys. J. A 46 165 (2010).
[67] L.J. Jardine, Phys. Rev. C 11, 1385 (1975).
[68] F.G. Kondev and S. Lalkovski, Nucl. Data Sheets 112,

707 (2011).
[69] B. Singh et al., Nucl. Data Sheets 114, 661 (2013).
[70] A. Baran, K. Pomorski, A. Lukasiak, and A. and So-

biczewski, Nucl. Phys. A361, 83 (1981).
[71] J.A. Wheeler, in Niels Bohr and the Development of

Physics, edited by W. Pauli, L. Rosenfeld, and W. Weis-
skopf (Pergamon, London, 1955), p. 163.

[72] R.W. Hasse, Rep. Prog. Phys. 41, 1027 (1978).
[73] C. Simenel and A.S. Umar, Phys. Rev. C 89, 031601(R)

(2014).
[74] P. Goddard, P. Stevenson, and A. Rios, Phys. Rev. C 93,

014620 (2016).
[75] A. Bulgac, P. Magierski, K.J. Roche, and I. Stetcu, Phys.

Rev. Lett. 116, 122504 (2016).
[76] N.G. Kelnar, H.M. Castaneda, and M. Nowakowski, EPL

85, 20006 (2009).
[77] O. Serot, N. Carjan, and D. Strottman, Nucl. Phys.

A469, 562 (1994).
[78] K.P. Santhosh, J.G. Joseph, and B. Priyanka, Nucl. Phys.

A 877, 1 (2012).
[79] D.N. poenaru, M. Ivascu, and A. Sandulescu, J. Phys. G

5, L169 (1979).
[80] D.N. Poenaru, D. Schnabel, and W. Greiner, At. Data

Nucl. Data Tabl. 48, 231 (1991).
[81] I. Silisteanu and C.I. Anghel, Rom. J. Phys. 60, 444

(2015).
[82] C.I. Anghel and I. Silisteanu, Phys. Rev. C 95, 034611

(2017).
[83] I. Silisteanu and C.I. Anghel, Rom. J. Phys. 62, 303

(2017).


