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I. Plasma. An Analysis 
 

1. History 

 

Plasma was first identified in a Crookes tube, and so described by Sir William Crookes in 1879 (he called 

it "radiant matter"). The nature of the Crookes tube "cathode ray" matter was subsequently identified by 

British physicist Sir J.J. Thomson in 1897.The term "plasma" was coined by Irving Langmuir in 1928, 

perhaps because the glowing discharge molds itself to the shape of the Crooks tube. 

Except near the electrodes, where there are sheaths containing very few electrons, the ionized gas 

contains ions and electrons in about equal numbers so that the resultant space charge is very small. We 

shall use the name plasma to describe this region containing balanced charges of ions and electrons. 

 

2. Definition of a plasma 

 

Plasma is loosely described as an electrically neutral medium of positive and negative particles (i.e. the 

overall charge of a plasma is roughly zero). It is important to note that although they are unbound, these 

particles are not ‗free‘. When the charges move they generate electrical currents with magnetic fields, and 

as a result, they are affected by each other‘s fields. This governs their collective behavior with many 

degrees of freedom.A definition can have three criteria: 

 

         (1)The plasma approximation: Charged particles must be close enough together that each particle 

influences many nearby charged particles, rather than just interacting with the closest particle (these 

collective effects are a distinguishing feature of a plasma). The plasma approximation is valid when the 

number of charge carriers within the sphere of influence (called the Debye sphere whose radius is the 

Debye screening length) of a particular particle is higher than unity to provide collective behavior of the 

charged particles. The average number of particles in the Debye sphere is given by the plasma parameter, 

"Λ" (the Greek letter Lambda). 

 

          (2)Bulk interactions: The Debye screening length (defined above) is short compared to the physical 

size of the plasma. This criterion means that interactions in the bulk of the plasma are more important 

than those at its edges, where boundary effects may take place. When this criterion is satisfied, the plasma 

is quasineutral. 

 

           (3)Plasma frequency: The electron plasma frequency (measuring plasma oscillations of the 

electrons) is large compared to the electron-neutral collision frequency (measuring frequency of collisions 

between electrons and neutral particles). When this condition is valid, electrostatic interactions dominate 

over the processes of ordinary gas kinetics. 

 

Ranges of plasma parameters 

Plasma parameters can take on values varying by many orders of magnitude, but the properties of plasmas 

with apparently disparate parameters may be very similar (see plasma scaling). The following chart 

considers only conventional atomic plasmas and not exotic phenomena like quark gluon plasmas: 
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3. Spark Discharge 

 

Spark discharge appears like a beam of thin shiny wires which are ramifying in a zig-zag way. 

They take place instantly in the discharge interval, they quickly disappear and they replace one 

with another. Spark discharge occurs when the gas pressure is high. In these conditions the 

ignition voltage is very high, but immediately, after the discharge interval is pierced by a spark 

channel, its resistance becomes very weak and in the circuit appears a strong current leading to a 

redistribution of the potential, therefore on the discharge interval remain a small potential 

difference. 

When the gas between the electrodes finds an obstacle in the shape of a solid wall, spark 

discharge doesn't find a way to bypass the obstacle. 
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Ignition voltage of spark discharge 

 

 At an atmospheric pressure, when the configuration of the discharge interval doesn't allow the 

appearance of a corona discharge or when the current source power is not enough for the 

appearance and for the maintenance of a stationary arc discharge, spark discharge is the final 

stadium of the discharge progress. 

 

Streamer theory 

 

The discharge interval is pierced only by a single avalanche which causes the occurrence of a 

streamer which is quickly spread by the discharge interval. 

 

4. Lightning 

 

On clear days and nights there is a slow, steady, nearly uniform flow of electricity from the 

surface of the negatively charged earth and oceans to about 50 km up into the positively charged 

atmosphere. The net charge over the whole earth is about 10^6 C; the potential difference 

between the earth and the electrosphere is about 3.0E5 Volts; and the current density is about 

1.0E-11 amps/m^2. Where there are no clouds, between the earth and the 50 kilometer elevation, 

the electric field may reach values as high as 100 volts per meter. In thunderclouds the electric 

field may be much higher. Lightning is the means by which electrons are transported back to the 

earth to "recharge" the earth to its negative polarity. 

 

Solar energy is the ultimate source for creating lightning. Warmth from the sun's radiant energy 

is responsible for convection of air, snow, rain, and hail within clouds. Through frictional effects 

(very much like those which make static electricity when we walk across carpets) the flow of air 

masses and precipitating droplets cause separation of charges. Free charges created in the upper 

atmosphere by cosmic rays also play a role in the detailed behavior of lightning. 

 

The electrical structure in thunderheads (generally cumulonimbus clouds) is complex. There are 

major differences between summer and winter thunderheads, and between those over Florida, 

New Mexico, South America and Japan. For the most common type of lightning, negative cloud 

to ground, there is a strong negative region in the lower section of the cloud. The base and top of 

the cloud may also have scattered positive regions. 

 

The lightning flash is composed of several strokes. The first, called the stepped leader, originates 

from the cloud. It comprises brief (~ 1 ms) spikes in electrical current (to more than 1000 A) 

separated by times of lesser current (50 ms, ~100 A). This part of the lightning flash sets the 

jagged shape that the later, more intense return strokes (currents originating from the earth) will 
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follow. The return strokes may have currents in excess of 30 kA, each lasting for about 50 ms. A 

typical lightning flash transfers about 10 C from the atmosphere to the earth.  

 

Ball-Lightning 

 

Lightning-balls are less shiny and they have a slow spread through the atmosphere. Their 

duration is between fractions of seconds and several minutes.  

 

Ionization of the atmosphere. Electric fields and atmospheric currents. 

 

In all atmospheric layers, ionization occurs because of the components of cosmic radiation. 

A study regarding ionization of the inferior atmospheric layers is done by using the usual 

methods, for example, concentration determination and ion mobility and also determination of 

the potential distribution. 

 

Lightning - Characteristic of a storm 

 

As the ice particles within a cloud (called hydrometeors) grow and interact, they collide, fracture 

and break apart. It is thought that the smaller particles tend to acquire positive charge, while the 

larger particles acquire more negative charge. These particles tend to separate under the 

influences of updrafts and gravity until the upper portion of the cloud acquires a net positive 

charge and the lower portion of the cloud becomes negatively charged. This separation of charge 

produces enormous electrical potential both within the cloud and between the cloud and ground. 

This can amount to millions of volts, and eventually the electrical resistance in the air breaks 

down and a flash begins. Lightning, then, is an electrical discharge between positive and negative 

regions of a thunderstorm.  

 

A lightning flash is composed of a series of strokes with an average of about four. The length and 

duration of each lightning stroke vary, but typically average about 30 microseconds. (The 

average peak power per stroke is about 1012 watts.)  

 

Lightning in mythology 

 

Lightning, the thunderbolt from mythology, has long been feared as an atmospheric flash of 

supernatural origins: the great weapon of the gods. The Greeks both marveled and feared 

lightning as it was hurled by Zeus. For the Vikings, lightning was produced by Thor as his 

hammer struck an anvil while riding his chariot across the clouds. In the East, early statues of 

Buddha show him carrying a thunderbolt with arrows at each end. Indian tribes in North America 

believed that lightning was due to the flashing feathers of a mystical bird whose flapping wings 

produced the sound of thunder. 
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A little bit of history... 

 

Benjamin Franklin performed the first systematic, scientific study of lightning during the second 

half of the 18th century. Prior to that time, electrical science had developed to the point where 

positive and negative charges could be separated. Electrical machines could, by rubbing together 

two different materials, store the charges in primitive capacitors called Leyden Jars from which 

sparks could be generated and observed.  

 

While others had previously noted the similarity between laboratory sparks and lightning, 

Franklin was the first to design an experiment which conclusively proved the electrical nature of 

lightning. In his experiment, he theorized that clouds are electrically charged, from which it 

follows that lightning must also be electrical. The experiment involved Franklin standing on an 

electrical stand, holding an iron rod with one hand to obtain an electrical discharge between the 

other hand and the ground. If the clouds were electrically charged then sparks would jump 

between the iron rod and a grounded wire, in this case, held by an insulating wax candle.  

 

This experiment was successfully performed by Thomas Francois D'Alibard of France in May 

1752 when sparks were observed to jump from the iron rod during a thunderstorm. G. W. 

Richmann, a Swedish physicist working in Russia during July 1753, proved that thunderclouds 

contain electrical charge, and was killed when lightning struck him. 

 

Before Franklin accomplished his original experiment, he thought of a better way to prove his 

hypothesis through the use of a kite. The kite took the place of the iron rod, since it could reach a 

greater elevation and could be flown anywhere. During a Pennsylvania thunderstorm in 1752 the 

most famous kite in history flew with sparks jumping from a key tied to the bottom of damp kite 

string to an insulating silk ribbon tied to the knuckles of Franklin's hand. Franklin's grounded 

body provided a conducting path for the electrical currents responding to the strong electric field 

buildup in the storm clouds. 

 

In addition to showing that thunderstorms contain electricity, by measuring the sign of the charge 

delivered through the kite apparatus, Franklin was able to infer that while the clouds were 

overhead, the lower part of the thunderstorm was generally negatively charged.  

 

Little significant progress was made in understanding the properties of lightning until the late 

19th century when photography and spectroscopic tools became available for lightning research.  

 

Lightning current measurements were made in Germany by Pockels (1897-1900) who analyzed 

the magnetic field induced by lightning currents to estimate the current values. Time-resolved 

photography was used by many experimenters during the late l9th century to identify individual 

lightning strokes that make up a lightning discharge to the ground.  
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Lightning research in modern times dates from the work of C.T.R. Wilson who was the first to 

use electric field measurements to estimate the structure of thunderstorm charges involved in 

lightning discharges. Wilson, who won the Nobel Prize for the invention of the Cloud Chamber, 

made major contributions to our present understanding of lightning.  

 

Research continued at a steady pace until the late 1960's when lightning research became 

particularly active. This increased interest was motivated both by the danger of lightning to 

aerospace vehicles and solid state electronics used in computers and other devices as well as by 

the improved measurement and observational capabilities which were made possible by 

advancing technology. 

 

Plasma - Lightning – parametric analysis 
20

0 10n  

T e (K)=10 6  

  

Debye length 

 
 

Landau length 

 

Plasma frequency 

 

Plasma condition 

 

N0 <<10 
11 

Te
3 

12,36*10
11

 4,63*10
5

 2,85*10
11

 YES 

 

 

5. Ionosfera 

Ionosfera reprezinta o ―patura‖ de electroni, ioni si molecule, care inconjoara Pamantul, care 

incepe de pe la aproximativ 50 km pana la 1000 km. Existenta sa se datoreaza in principal 

radiatiilor UV provenite de la soare. Aceasta ionizare depinde deci de activitatea soarelui ceea ce 

face sa avem alte grade de ionizare ziua sau noaptea, si alte grade de ionizare in diferite sezoane 

ale anului. Alt aspect important il reprezinta si pozitia geografica, deoarece avem alt flux de 

particule provenite de la soare la poli, si altul la ecuator. 
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Stratul  “D” 

Este cea  mai de jos subpatura a ionosferei, cuprinsa intre 60-90 km fata de suprafata Pamantului. 

Ionizarea in aceasta zona se datoreaza radiatiei alfa hidrogen din seria Lyman cu o lungime de 

unda de 121.5 nm ionizand oxidul de azot (NO). In plus, la o activitate a soarelui mare, razele X 

pot ioniza N2 si O2 . Ca rezultat avem o frecventa mare a acestei zone, care nu reflecta undele 

radio, dar le atenueaza. 

 

Stratul “E” 

Stratul din mijlocul ionosferei, cuprins intre 90 – 120 km fata de suprafata Pamantului. Ionizarea 

aici se datoreaza razelor X slabe (1-10 nm), si razelor UV indepartate, care ionizeaza moleculele 

de O2. La incidenta oblica, aceasta zona poate decat reflecta undele radio (< 10 MHz). 

 

Stratul “F” 

Se intinde de la aproximativ 200 km pana la mai bine de 500 km fata de suprafata Pamantului. 

Reprezinta zona  cea  mai densa a ionosferei. Dupa aceasta zona de afla asa numita ―partea de 

sus‖ a ionosferei unde radiatiile UV extreme ionizeaza oxigenul atomic. Noaptea el formeaza un 

singur strat, dar pe timpul zilei apar distorsiuni, care poate incadra aceasta zona in doua parti 

distincte F1 respectiv F2. 

 

Mecanismul de refractie al ionosferei 

 

Cand o unda  radio ajunge in ionosfera, campul electric al undei determina o oscilatie a 

electronilor din ionosfera cu o frecventa egala cu frecventa undei incidente. Aceasta oscilatie a 

electronilor poate fi pierduta prin procesul de recombinare, fie poate re-emite energia undei 

incidente. Refractie totala se poate produce daca frecventa ionosferei la ―coliziune‖ este mai 
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mica decat frecventa undei radio, iar cand densitatea de electroni in ionosfera este suficient de 

mare. 

Frecventa pe care trebuie sa o aibe o unda radio pentru a putea fi reflectata de o anumita zona  a  

ionosferei, trebuie sa fie mai mica decat frecventa critica : 

 
 

N = densitatea de electroni ( cm
-3

) 

fcritica  (MHz) 

 

 

6. Notiuni generale de Fizica Plasmei 

 

La nivel microscopic, plasma se defineşte ca un ansamblu de particule neutre (atomi, molecule), 

particule încărcate cu sarcină electrică (electroni, ioni negativi, ioni pozitivi), cuante de radiaţie 

şi câmpuri electromagnetice aflate într-o continuă interacţiune. La nivel macroscopic, plasma 

poate fi definită ca un fluid conductor electric în care purtătorii de sarcină electrică se află într-un 

număr suficient de mare pentru a influenţa în mod decisiv proprietăţile mediului. 

Câţiva  parametri importanţi ce caracterizează  plasma  ar fi: lungimea Debye, sfera Debye, 

lungimea Landau, frecvenţa plasmei, frecvenţa Larmor, raza Larmor.    

Se defineşte lungimea Debye  a electronilor din plasmă (lungimea Debye de ecranare a 

ionilor de către electroni) din relaţia: 

 

în care:  este temperatura electronilor, iar  este densitatea purtătorilor de sarcină electrică 

din plasmă. 

Potenţialul coulombian ecranat al ionului pozitiv test cu sarcină electrică +e are forma: 
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Se defineşte lungimea Debye  a ionilor din plasmă (lungimea Debye de ecranare a 

electronilor de către ioni) din relaţia: 

 

în care:  este temperatura ionilor. 

Potenţialul coulombian ecranat al electronului test cu sarcină electrică  -e are forma: 

 
Putem interpreta lungimea Debye ca fiind acea distanţă din plasmă la care, în condiţiile de 

ecranare a purtătorilor de sarcină electrică, potenţialul coulombian ecranat al particulei test libere 

scade de e ori. O caracteristică esenţială a lungimii Debye este aceea că ea defineşte dimensiunea 

minimă a volumului ocupat de plasmă. Volumul sferic cu raza egală cu lungimea Debye poartă 

numele de sferă Debye. La analiza diferitelor fenomene din plasmă, trebuie să se facă deosebire 

între procesele care au loc în exteriorul sferei Debye, respectiv în interiorul sferei Debye. 

 

Lungimea Landau  este definită ca  distanţa medie dintre purtătorii de sarcină la care energia 

cinetică a electronilor este egală cu energia lor potenţială. În cazul electronului aflat în câmpul 

coulombian al unui ion simplu ionizat, lungimea Landau este dată de relaţia: 

 

O altă mărime caracteristică plasmei este frecvenţa plasmei . Abaterii spaţiale microscopice 

de la cvasineutralitatea plasmei, îi corespunde o abatere microscopică temporală. Această abatere 

este rezultatul tendinţei plasmei de a rămâne cvasineutră la nivel macroscopic. Micile fluctuaţii 

temporale ale plasmei de la starea de cvasineutralitate macroscopică, dau naştere la câmpuri 

electrice de aşa natură încât electronii vor fi antrenaţi într-o mişcare oscilatorie cu frecvenţa : 
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Această relaţie a fost obţinută făcând următoarele aproximaţii: ionii se află în stare de repaus, iar 

electronii sunt consideraţi reci. Aceştia iau viteze numai datorită apariţiei câmpurilor electrice 

rezultate în urma abaterilor microscopice de la cvasineutralitate. De asemenea, pe durata abaterii 

temporale de la cavsineutralitate, în plasmă nu iau naştere, respectiv nu dispar purtători de 

sarcină electrică. Aşadar, frecvenţa plasmei a fost obţinută într-un model idealizat. Luarea în 

considerare a temperaturii plasmei va duce la o creştere a frecvenţei plasmei. 

În modelul uniparticulă din fizica plasmei, mişcarea unei particule cu sarcina electrică , 

respectiv masa , în prezenţa unui câmp electromagnetic prescris poate fi descrisă de o giraţie a 

particulei în plan perpendicular pe direcţia  câmpului magnetic, peste care se suprapun drifturi 

atât în direcţie paralelă cât şi în direcţie perpendiculară pe direcţia câmpului magnetic. Frecvenţa 

unghiulară de giraţie poartă numele de frecvenţă Larmor  şi este dată de relaţia: 

 
 

unde   este modulul inducţiei câmpului magnetic. 

Raza de giraţie a particulei în plan perpendicular pe direcţia câmpului magnetic, numită rază 

Larmor , este dată de expresia: 

 
 

n care: este componenta perpendiculară a vitezei particulei. 

Pentru ca un sistem de particule neutre, particule încărcate cu sarcină electrică, cuante de radiaţie 

şi câmpuri electromagnetice să poată fi numit plasmă, trebuie să îndeplinească următoarele 

condiţii: 

 densitatea purtătorilor de sarcină electrică negativă  trebuie să fie egală cu densitatea 

purtătorilor de sarcină electrică pozitivă . Aceasta este condiţia de cvasineutralitate 

macroscopică:  

 dimensiunile caracteristice ale volumului plasmei  trebuie să fie mult mai mari decât 

lungimea Debye :    

 timpii caracteristici fenomenelor studiate în plasmă  trebuie să fie mult mai mari decât 

inversul frecvenţei plasmei :    

 numărul de particlue din sfera Debye  trebuie să fie mult mai mare ca unitatea:   
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Funcţie de dimensiunile caracteristice ale volumului plasmei , lungimea Debye , drumul liber 

mediu de ciocnire , şi raza Larmor , distingem trei tipuri generale de plasme: 

 

 plasme rarefiate sunt plasmele care îndeplinesc următoarele condiţii: 

 
Aceste plasme mai sunt cunoscute sub numele de plasme fără ciocniri 

 plasme medii sunt plasmele care îndeplinesc următoarele condiţii: 

 

 plasme dense sunt plasmele care îndeplinesc următoarele condiţii: 

 
Aceste plasme pot fi considerate ca reprezentând un mediu continuu. 

 

Analiza parametrica 

Vom folosi Lungimea Debye: 

 

Pentru calcularea lungimii Landau :                                                                                                                                                                                                

 

 Frecventa plasmei este : 
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Conditia de plasma:      N0 <<10 
11 

Te
3
 

Conditia ca purtatori de sarcina sa dispara ca rezultat al recombinarii de volum:       N0>>10
15

 Te
3     

 

Rezultate:n0=10
5        

Te=10
4           

    = 14,12
 

 =1,56*10
-11 

= 9*10
3 

Conditia de plasma
 

              N0 <<10 
11 

Te
3 
= 10

5
<< 10

11
(10

4
)
3 

= 10
5 

<<10
23 

 

DA este indeplinita Conditia de plasma.   

                N0>>10
15

 Te
3   

=10
5
>> 10

15
(10

4
)
3   

=10
5
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II. Quantum Plasmas 
 

1. Introduction 

 

Quantum plasmas have attracted a renewed attention in recent years. The inclusion of quantum 

terms in the plasma fluid equations – such as quantum diffraction effects, modified equations of 

state, and spin degrees of freedom – leads to a variety of new physical phenomena. Recent 

advances include linear and nonlinear quantum ion-acoustic waves in a dense magnetized 

electron-positron-ion plasma, the formation of vortices in quantum plasmas, the quantum Weibel 

and filamentation instabilities, the structure of weak shocks in quantum plasmas, the nonlinear 

theory of a quantum diode in a dense quantum magnetoplasma, quantum ion-acoustic waves in 

single-walled carbon nanotubes, the many-electron dynamics in nanometric devices such as 

quantum wells, the parametric study of nonlinear electrostatic waves in two-dimensional 

quantum dusty plasmas, stimulated scattering instabilities of electromagnetic waves in an 

ultracold quantum plasma, and the propagation of waves and instabilities in quantum plasmas 

with spin and magnetization effects. 

 

Plasma can be regarded as quantum when the quantum nature of its particles significantly affects 

its macroscopic properties. To determine when quantum effects in plasmasare important, their 

adequate description is needed. As plasma is an ensemble of many particles, the corresponding 

approach must be based on the appropriate description of a quantum particle. 

 

The description of non-relativistic quantum plasma can be based on either Schrodinger‘s 

representation (in which the operators are time-independent, while the time dependence of 

physical quantities of the system is defined by the corresponding time dependence of the 

system‘s wave function or density matrix) or Heisenberg‘s representation (in which the time 

dependence is transferred from the wave functions to the operators). Most of quantum plasma 

models that are commonly used now use the Schrodinger‘s representation; the quantum plasma 

state is described either by wave functions of separate particles (the so-called multistream 

model), or by the density matrix, or by the Wigner function defined in terms of the density 

matrix in coordinate representation, or – and this approach has become popular recently – by a 

set of the so-called quantum hydrodynamics equations. 

 

Naturally, simplifying assumptions are made in all these models (which thus lead to limitations 

of their applicability), which one should take into account when analyzing results obtained from 

them. However, concrete applicability limits of results obtained from a particular model are not 

always stated explicitly (this especially concerns the widely used model of quantum 

hydrodynamics), which can lead to their incorrect interpretation. This has recently been pointed 

out, for example, by Melrose and Mushtaq as well as by Kuzelevand Rukhadze. 
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With the recent rapid increase in the number of publications on quantum plasmas, the lack of 

detailed analysis of the made assumptions and the associated limitations for the most common 

quantum plasma models becomes increasingly obvious, and therefore it is useful to provide such 

analysis. Beyond this, there is an important problem of macroscopic observability of quantum 

phenomena in plasmas; this problem is also connected with the question of when (and which) 

quantum phenomena are important in quantum plasmas. 

 

The answer to this question of course depends on the models and approximations used to 

describe the quantum plasma. In this paper, we provide a detailed analysis of the quantum 

hydrodynamics model, and study the kinetic features of analytical properties of the linear 

dielectric response function in isotropic unmagnetized quantum plasma. In doing this, we 

highlight the most important, in our view, fundamental problems associated with the linear 

response of quantum plasma, which require further investigation. 

 

2. Properties of Quantum Plasma 

 

We here summarize some of the properties that distinct quantum plasmas from classical 

plasmas. While classical plasmas are characterized by low density and high temperature, 

quantum plasmas have high density and low temperature. The quantum N-body problem is 

governed by the Schr ¨ odinger equation for the N-particle wave function ψ(q1, q2,..., qN, t) where 

qj = (r j , s j) is the coordinate(space, spin) of particle j. For identical Fermions, the equilibrium N-

particle wave function is given by the Slater determinant. 

(1) 

which is anti-symmetric under odd numbers of permutations. Hence, ψ vanishes if two rows are 

identical, which is an expression of the Pauli exclusion principle that two identical Fermions 

cannot occupy the same state. Example (N = 2): ψ(q1, q2, t) = 
1

 2
[ψ1(q1, t)ψ2(q2, t) − ψ1(q2, 

t)ψ2(q1, t)] so that ψ(q2, q1, t) = −ψ(q1, q2, t) and ψ(q1, q1, t) = 0. Due to the Pauli exclusion 

principle, all electrons are not permitted to occupy the lowest energy state, and in the ultra-cold 

limit when all energy states up to the Fermi energy level are occupied by electrons, there is still a 

quantum-statistical pressure determined by the Fermi pressure. 

Quantum effects start playing a significant role when the de Broglie wavelength is similar to or 

larger than the average interparticle distance n
−1/3

, i.e. when 
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𝑛𝜆𝑏
3 ≥ 1                 (2) 

or, equivalently, the temperature is comparable or lower than the Fermi temperature TF = EF/kB, 

where 

𝐸𝐹 =
ℏ2

2𝑚
(3𝜋2)2/3(𝑛𝜆𝐵

3 )2/3 ≥ 1   (3) 

 

is the Fermi energy for electrons, so that 

𝜒 =
𝑇𝐹

𝑇
=

1

2
(3𝜋2)

2

3(𝑛𝜆𝐵
3 )2/3 ≥ 1 (4) 

 

When the temperature approaches TF, one can show using density matrix formalism that the 

equilibriumelectron distribution changes from Maxwell–Boltzmann ∝exp(−E/KBT) to the 

Fermi–Dirac statistics ∝[exp((E + μ)/KBT) + 1]
-1

. For an ultracold plasma, the Fermi screening 

scalelength 

𝜆𝐹 =
𝑉𝐹

𝜔𝑃
 (5) 

 

is the quantum analogue of the Debye radius, where the Fermi speed 

 

𝑉𝐹 = (2𝐸𝐹/𝑚)1/2 =
ℏ

𝑚
(3𝜋2𝑛)1/3(6) 

 

is the speed of an electron at the Fermi surface. The quantum coupling parameter 

 

𝐺𝑞 =
𝐸𝑖𝑛𝑡

𝐸𝐹
~(

1

𝑛𝜆𝐹
3 )2/3~(

ℏ𝜔𝑝

𝐸𝐹
)2(7) 

 

is analogous to the classical one when λF → λD. 

The quantum analogue to the Vlasov-Poisson systemis the Wigner-Poisson model 

 

𝜕𝑓

𝜕𝑡
+ 𝑣 ∙ ∇𝑓 = −

𝑖𝑒𝑚𝑒
3

 2𝜋 3ℏ4  𝑒𝑖𝑚𝑒 𝑣−𝑣
′ ∙

𝜆

ℏ × [𝜙  𝑥 +
𝜆

2
, 𝑡 − 𝜙(𝑥 −

𝜆

2
, 𝑡)]𝑓(𝑥, 𝑣 ′, 𝑡)𝑑3𝜆𝑑3𝑣′(8) 

and 

∇2𝜙 = 4𝜋𝑒( 𝑓𝑑3𝑣 − 𝑛0).          (9) 

 

Note that the Wigner equation converges to the Vlasovequation for classical particles when 

ℏ→ 0 
𝜕𝑓

𝜕𝑓
+ 𝑣 ∙ ∇𝑓 = −

𝑒

𝑚𝑒
∇𝜙 ∙

𝜕𝑓

𝜕𝑣
  (10) 

 

We take the moments of the Wigner equation and obtain the quantum-electron fluid equations  

 
𝜕𝑛

𝜕𝑡
+ ∇ ∙  𝑛𝑢 = 0,                             (11) 
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𝑚 
𝜕𝑢

𝜕𝑡
+ 𝑢 ∙ ∇𝑢 = 𝑒∇𝜙 −

1

𝑛
∇𝑃 + 𝐹𝑄 ,            (12) 

 

where 𝜙 is determined from ∇2𝜙 = 4πe(n−n0), and for the degenerate Fermi-Dirac distributed 

plasma one has (up to constants of order unity) the quantum statistical pressure 

 

𝑃 =
𝑚𝑉𝐹

2𝑛0

3
(
𝑛

𝑛0
)(𝐷+2)/𝐷,              (13) 

 

where D is the number of degrees of freedom in the system, and the diffraction effects 

 

𝐹𝑄 =
ℏ2

2𝑚
∇  

∇2 𝑛

 𝑛
 ≡ −∇𝜙𝐵 ,        (14) 

 

whereφB is the Bohm potential. Linearization of the NLS-Poisson Equations yields the 

frequency of EPOs 

 

𝜔𝑘 = (𝜔𝑝𝑒
2 + 𝑘2𝑉𝑇𝐹

2 +
ℏ2𝑘4

4𝑚𝑒
2 )1/2,    (15) 

where 

 

𝑉𝑇𝐹 =  
𝑘𝐵𝑇𝐹𝑒

𝑚𝑒
.                 (16) 

 

One can identify two distinct dispersive effects: one long wavelength regime, VTF≫ ℏk/2me, and 

one short wavelength regime, VTF≪ ℏk/2me, separated by the critical wavenumber 

 

𝑘𝑐𝑟𝑖𝑡 =
2𝜋

𝜆𝑐𝑟𝑖𝑡
=

𝜋ℏ

𝑚𝑒𝑉𝑇𝐹
~𝑛−1/3.     (17) 

 

Similar results have been obtained by Bohm and Pines, see Refs. Quantum diffraction effects 

have recently been observed in experimental observations of electrostatic oscillations in quantum 

plasmas. By introducing the effective wave function 

 

𝜓 𝑟, 𝑡 =  𝑛(𝑟, 𝑡)exp⁡(𝑖𝑆(𝑟, 𝑡)/ℏ),                   (18) 

 

where S is defined according to mu = ∇S and n = |ψ|
2
 , one can show that the QHD equations are 

equivalent to the effective NLS-Poisson system 

 

𝑖ℏ
𝜕𝜓

𝜕𝜓
+

ℏ2

2𝑚
∇2𝜓 + 𝑒𝜙𝜓 −

𝑚𝑉𝐹
2

2𝑛0
2  𝜓 

4

𝐷𝜓 = 0,                (19) 
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and 

 

∇2𝜙 = 4𝜋𝑒( 𝜓2 − 𝑛0).           (20) 

 

The effective NLS equation (19) captures the two main properties of a quantumplasma, namely 

the quantum statistical pressure and the quantum diffraction effects, and is coupled self-

consistently to the electrostatic potential given by the Poisson equation (20). We note that one- 

dimensional version of Eq. (19) without the φ-termhas also been used to describe the behaviour 

of a Bose-Einstein condensate. We will give two examples in the next sections where this 

formalism has been used to analyze nonlinear effects in a quantum plasma. 

 

3. Basic Methods of Description of Quantum Plasmas 

 

As in the case of classical plasmas, the most complete description of quantum plasma as a 

system of many interacting particles is a completely hopeless task. In case of quantum plasma 

this task is in a sense even more hopeless than in case of classical plasma, not only because it is 

impossible to solve the Schrodinger‘s equation for the N-particle wavefunction of the system, but 

also because of the lack of such wavefunction for a macroscopic system that interacts, however 

weakly, with its environment. Yet the problem can be significantly simplified by assuming that 

the plasma is nearly ideal, i.e., that the two- and higher-order correlations between its particles 

can be neglected. If this is the case, then the plasma can be considered as a collection of quantum 

particles that interact only via their collective field. As mentioned above, the most commonly 

used now are the following models (which all in fact use the assumption of ideal plasma):  

(i) the quantum analog of the multistream model, 

(ii) the kinetic model based on the Wigner equation for the density of quasi-probability of 

particle distribution in coordinates and momenta, and, finally, 

(iii) the quantum hydrodynamics model. 

 

 All of these models, in one way or another, are based on the Schr¨odigner‘s equations for the 

wavefunctions of plasma particles, and therefore are non-relativistic; hence they can only be used 

for describing non-relativistic ideal plasmas and, strictly speaking, for describing plasma 

oscillations with small (non-relativistic) phase velocities ω/k ≪ c (here ω and k are frequency 

and wavenumber of the oscillations, respectively, and c is the speed of light). We should note, 

however, that more general relativistic models of ―quantum plasmadynamics‖ appeared recently; 

we expect that these models will be more widely used in the future, due to their logically 

consistent description of both quantum particles and quantized fields. However, here we will 

only consider the non-relativistic models, as they are the most widely used in recent literature on 

quantum plasmas, probably owing to their relative simplicity. 

Description of quantum plasma should be started with the models of Hartree and Hartree-Fock, 

in which N independent Schrodinger equations for N plasma particles are coupled via the 
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average self-consistent field (in Hartree-Fock‘s model the correction due to exchange 

interactions is also taken into account). The Hartree and Hartree-Fock approximations for 

quantum plasmas are analogous to the self-consistent field approximation in description of 

classical plasmas, and they form a basis for kinetic and hydrodynamic models of quantum 

plasmas. Therefore it is important for further considerations to write down their main 

assumptions. 

 

Main assumptions of the Hartree and Hartree-Fock models 

 

1. Plasma particles interact only through average classical (i.e., not quantized) collective 

fields. 

2. Plasma is ideal, Γq = Uint/𝜖F = e
2
 n

1/3 
/𝜖F∼ (ℏωp/𝜖F)

2≪ 1, where 

𝜖F =(ℏ2
/2m)(3π

2
 n)

2/3
is the Fermi energy of electrons, ωp = (4πe

2
 n/m)

1/2
 is electron plasma 

frequency, and e, m and n are charge, mass, and number density of electrons.We should note that 

for the electron gas in metals the condition Γq≪ 1 is in generalnot satisfied: in metals we have 

Γq∼ 1. 

3. Non-relativistic approximation is used; see the discussion after Eq. 

 

Kinetic models of Wigner-Poisson and Wigner-Maxwell These models are based on the Wigner 

equation describing time evolution of the Wigner function [4], which is coupled with either 

Poisson‘s equation or Maxwell‘s equations describing the self-consistent collective electrostatic 

and electromagnetic field, respectively. The Wigner function describes quasidensity of quantum 

particle probability distribution in coordinate-momentum phase space (we call it quasi-density 

because the Wigner function can attain negative values, due to noncommutativity of position and 

momentum operators in quantum mechanics, i.e., due to uncertainty principle). The Wigner 

function f(q,P, t) is defined from the density matrix ρ(q,q′,t) of plasma in coordinate 

representation as follows: 

𝑓 𝑞, 𝑃 =
1

(2𝜋)𝑁
 𝑑𝜏 𝑒−𝑖𝜏  𝑃𝜌(𝑞 −

1

2
ℏ𝜏 , 𝑞 +

1

2
ℏ𝜏 ),    (21) 

where q and P are canonically conjugated generalized coordinate and momentum, N is the 

number of components of P (and/or of q) and corresponds to the number of coordinates of 5a 

particle (N = 3 in a 3-dimensional system). The Wigner function is normalized so that 

 

𝑛 𝑞 =  𝑓 𝑞, 𝑃 𝑑𝑃,  (22) 

where n(q) is the number density of plasma particles. The Wigner equation, which describes 

evolution of the Wigner function, follows from the evolution equation for the density matrix in 

coordinate representation, and has the following form: 
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𝜕𝑓(𝑞,𝑃)

𝜕𝑡
=

1

(2𝜋)𝑁
𝑖

ℏ
 … 𝑑𝜏 𝑑𝑘𝑑𝜂 𝑑𝑟𝑒𝑖 𝜏   𝜂   −𝑃 +𝑘 𝑟−𝑞  𝑓 𝑟, 𝜂  × [𝐻  𝜂 +

1

2
ℏ𝑘, 𝑟 +

1

2
ℏ𝜏  ],  

    (23) 

where H is the Hamiltonian of the system. 

 

Main assumptions of Wigner-Poisson and Wigner-Maxwell models 

 

1. Plasma is ideal, Γq = Uint/𝜖F = e
2
 n

1/3 
/𝜖F∼ (ℏωp/𝜖F )

2≪ 1. As noted above, this condition is not 

satisfied for electron gas in metals, where Γq∼ 1.Type equation here. 

 

2. Plasma particles interact only via average collective fields that are described by 

Maxwell‘s equations (i.e., classical electrodynamics is assumed for the fields). 

 

3. Collisions between quantum particles are not taken into account (the models are collisionless). 

 

4. Non-relativistic approximation is used. 

 

5. Usually, spin of particles (as well as exchange interactions) are not taken into account. 

However, the effect of spin can still be accounted for in the workframe of non-relativistic 

Wigner-Maxwell model by introducing the spin distribution function and writing the 

corresponding kinetic equation for this function; this has been done, for example, by Silin and 

Rukhadze. 

 

4. Multistream model 

 

This model is based on the Hartree approximation of plasma particles interacting via self-

consistent collective fields only. Plasma is considered as a collection of weakly correlated ―cold 

beams‖ formed by groups of particles with the same momenta; these beams are assumed to 

interact only through their collective fields. Using linearized equations of ―cold hydrodynamics‖ 

for each of these groups of particles (beams), their current density and the corresponding 

dielectric permittivity tensor are calculated. Then adding up the contributions of all groups of 

plasma particles with the corresponding ―weight functions‖, i.e., averaging these contributions 

over plasma equilibrium distribution function f0(p), one obtains the dielectric permittivity tensor 

of the whole plasma (see Sec. IV for details of this procedure). This procedure is equivalent to 

calculating the dielectric permittivity tensor directly from the Wigner equation (5), since the 

latter is based on the same assumption of weakly correlated particles interacting only via their 

collective fields. 

 

Main assumptions of the multistream model 

 

Same as for kinetic models based on the Wigner equation (see above). 
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III. Quarck-Gluon Plasma 
 

1. Why this is referred to as "plasma" 

A plasma is matter in which charges are screened due to the presence of other mobile charges; 

for example: Coulomb's Law is modified to yield a distance-dependent charge. In a QGP, 

the color charge of the quarks and gluons is screened. The QGP has other analogies with a 

normal plasma. There are also dissimilarities because the color charge is non-abelian, whereas 

the electric charge is abelian. Outside a finite volume of QGP the color electric field is not 

screened, so that volume of QGP must still be color-neutral. It will therefore, like a nucleus, have 

integer electric charge. 

 

2. General introduction 

 

Quark–gluon plasma is a state of matter in which the elementary particles that make up the 

hadrons of baryonic matter are freed of their strong attraction for one another under extremely 

high energy densities. These particles are the quarks and gluons that compose baryonic matter. In 

normal matter quarks are confined; in the QGP quarks are deconfined. In classical QCD quarks 

are the Fermionic components of mesons and baryons while the gluons are considered the 

Bosonic components of such particles. The gluons are the force carriers, or bosons, of the QCD 

color force, while the quarks by themselves are their Fermionic matter counterparts. 

 

Although the experimental high temperatures and densities predicted as producing a quark-gluon 

plasma have been realized in the laboratory, the resulting matter does not behave as a quasi-ideal 

state of free quarks and gluons, but, rather, as an almost perfect dense fluid. Actually, the fact 

that the quark-gluon plasma will not yet be "free" at temperatures realized at present accelerators 

was predicted in 1984 as a consequence of the remnant effects of confinement. 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Plasma_(physics)
http://en.wikipedia.org/wiki/Charge_(physics)
http://en.wikipedia.org/wiki/Debye_length
http://en.wikipedia.org/wiki/Coulomb%27s_law
http://en.wikipedia.org/wiki/Color_charge
http://en.wikipedia.org/wiki/Gluon
http://en.wikipedia.org/wiki/Gauge_theory
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3. Short description 

Quark-gluon plasma appears in heavy-ion(nucleus-nucleus) 

collisions: protons and neutrons decays into their 

constituents to form this type of plasma.  

It is characterized by:  

 

o Critical baryon density:  

 

;10 0 C

 

o Critical temperature:  

TC=150-200 MeV=(1.8-2.4)x10
12

 K 

 

o Life-time of QGP: 

 

 

High energy quarks and gluons propagating through 

quark-gluon plasma suffer differential energy loss via 

elastic scattering from quanta in the plasma. This 

mechanism is very similar in structure to ionization loss 

of charged particles in ordinary matter. The dE/dx is 

roughly proportional to the square of the plasma 

temperature. For hadron-hadron collisions with high 

associated multiplicity and with transverse energy 

dET/dy in excess of 10 GeV per unit rapidity, it is 

possible that quark-gluon plasma is produced in the 

collision. 

Collisional energy loss of a quark with energy E in a QGP: 

T

E
T

N

dx

dE

s

S

f





ln)

6
1(

3

4 22  

 

A quark–gluon plasma (QGP) or quark soup is a phase of quantum chromodynamics (QCD) 

which exists at extremely high temperature and/or density. This phase consists of asymptotically 

free quarks and gluons, which are several of the basic building blocks of matter. Experiments 

at CERN's Super Proton Synchrotron (SPS) first tried to create the QGP in the 1980s and 1990s: 

the results led CERN to announce indirect evidence for a "new state of matter" in 2000. Current 

experiments (2011) at the Brookhaven National Laboratory's Relativistic Heavy Ion 

Collider(RHIC) at Long Island (NY, USA) and, respectively, at CERN's recent LHC collider at 

3173

0
/102.2/125.0 mkgfmGeV 

cfm/105
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Geneva (Switzerland) are continuing this effort, by smashing relativistically accelerated gold 

atoms rsp. lead atoms onto each other .  

QGP cannot be observed directly: discovery of quark-gluon plasma is made by comparison of 

theoretical predictions for signatures with experimental data. 

As already mentioned, three new experiments running on CERN's Large Hadron Collider (LHC), 

on the spectrometersALICE, ATLAS and CMS, will continue studying properties of QGP. 

Starting in November 2010, CERN temporarily ceased colliding protons, and began 

colliding lead Ions for the ALICE experiment. They were looking to create a QGP and were 

expected to stop December 6, colliding again protons in January.Within the first week of 

colliding these lead ions, the LHC appears to have created multiple quark-gluon plasmas 
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withtemperatures in the tens of trillions of degrees. 

4. The Large Hadron Collider 

 

The Large Hadron Collider (LHC)[1] accelerates protons in a 27 km long tunnel located at the 

European Organization for Nuclear Research (CERN) in Geneva, Switzerland. The LHC will 

also accelerate lead ions to make them collide at the highest energy ever. 

 

The acceleration process starts in Linac 2 for protons and Linac 3 for lead ions. The protons 

accelerated in Linac 2 are injected into a Proton Synchrotron Booster with an energy of 50 MeV. 

In the synchrotron, protons reach an energy of 1.4 GeV. The Super Proton Synchrotron (SPS) 

has been modified to deliver a high-brightness proton beam required by the LHC. The SPS takes 

26 GeV protons from the Proton Synchrotron (PS) and brings them to 450 GeV before 

extraction.  

 

The Linac 3 produces 4.2 MeV/u lead ions. Linac 3 was commissioned in 1994 by an 

international collaboration and upgraded in 2007 for the LHC. The Low Energy Ion Ring (LEIR) 

is used as a storage and cooler unit providing ions to the (PS) with an energy of 72 

MeV/nucleon. Ions will be further accelerated by the PS and the SPS before they are injected 

into the LHC where they reach an energy of 2.76 TeV/nucleon.  

 

The LHC consists of 1232 superconducting dipole magnets with double aperture that operate at 

up to 9 Tesla magnetic field. The accelerator also includes more than 500 quadrupole magnets 

and more than 4000 corrector magnets of many types.  

Ions are obtained from purified lead that is heated to 550 C. The lead vapour is then ionized with 

an electric current that produces various charge states. The Pb ions are then selected with 

magnetic fields. This process takes place in an Electron Cyclotron Resonance (ECR) source  
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The ECR lead source is equipped with an hexapole permanent magnet. The plasma chamber is 

immersed in a solenoidal magnetic field. Pulsed beam currents produce Pb ions that are then 

extracted to the Linac. 

 

After acceleration, the lead ions go through a carbon foil that strips them to Pb , which are 

accumulated in the Low Energy Ion Ring (LEIR). LEIR is a circular machine which transforms 

the long pulses of Linac 3 into high-density bunches needed by the LHC. LEIR injects bunches 

of ions to the PS.  

 

At the SPS, ions go once more through a thin aluminium foil which strips them to Pb. The 

thickness of the stripper foil has to be chosen carefully to reduce contamination of lower charge 

states and keep emittance low. Foils of 0.5 to 1 mm thickness have been studied. In this way, 

fully stripped lead ions are obtained for the LHC.  

 

The total cross-section of proton–proton interaction at 7 TeV could be inferred from hadronic 

cross-section measurements at lower energy [2]. It would be around 110 mbarn and correspond 

to about 60 mbarn of inelastic-scattering cross-section. The accelerator, at its design level, will 

reach a luminosity of 10
34

s
-1

 cm
-1

 which means that the interaction rate will be  

 

Rate=10
34

(1/cm
2
s)*60*10

-3
barn*10

-24
cm

2
/barn=600*10

6
collisions/s 

 

A 25 ns interval between bunches gives a 40 MHz crossing rate. On average 19 inelastic events 

will occur each time bunches cross. Since there will be gaps in the beam structure, an average 

crossing rate of 31.6 MHz will be reached. Detectors at the LHC must be designed to cope with 

these frequencies. However, ALICE will run at a modest 300 kHz interaction rate in proton–

proton mode and 10 kHz in Pb–Pb.  

During autumn 2009, bunches of protons will be injected into the LHC ring. During the start-up 

phase, first collisions with protons at 3.5 TeV will take place. An increase of the proton beam 

energy in a second phase is foreseen. By the end of the run with protons in year 2010, lead-ion 

collisions will be produced.  

The ALICE experiment is ready to take data on all the phases of the accelerator operation. 

 

5. The ALICE experiment 

 

The ALICE experiment has been designed to observe the transition of ordinary matter into a 

plasma of quarks and gluons [3]. At the energies achieved by the LHC, the density, the size, and 

the lifetime of the excited quark matter will be high enough to allow a careful investigation of 

the properties of this new state of matter. The temperature will exceed by far the critical value 

predicted for the transition to take place. 
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ALICE has been optimized to study global event features. The number of colliding nucleons will 

provide information on the energy density achieved. The measurement of elliptic flow patterns 

will provide information about thermalization on the partonic level and the equation of state of 

the system in the high-density phase. Particle ratios in the final state are connected to chemical 

equilibration and provide a landmark on the trajectory of the system in the phase diagram. The 

spacetime evolution of the system can be investigated via particle interferometry, complemented 

by the study of resonaces. Moreover, important information about the system properties can be 

obtained by the study of hard probes, which will be produced abundantly at the LHC. 

Deconfinement may be reflected in the abundancies of J/ψ and Upsilon. The study of jet 

production on an event-by-event basis will allow one to investigate the transport properties of 

hard-scattered partons in the medium, which are expected to be strongly modified if a quark–

gluon plasma is formed. 

 

ALICE is also well suited for studies of proton–proton and photon–photon reactions. Photon– 

photon reactions include QED and QCD processes that go from lepton-pair to hadron and jet 

production. As for proton–proton interactions, diffractive physics would be an exciting area of 

research. 

The ALICE detector will have a tracking system over a wide range of transverse momentum 

which goes from 100 MeV/c to 100 GeV/c as well as particle identification able to separate 

pions, kaons, protons, muons, electrons, and photons. 

A longitudinal view of the ALICE detector: 
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In the forward direction a set of tracking chambers inside a dipole magnet will measure muons. 

An absorber will stop all the products of the interaction except for the muons which travel across 

and reach the tracking chambers that form the muon arm. 

The central part of the ALICE detector is located inside a solenoid that provides a magnetic field 

of 0.5 T. The central tracking and particle identification system cover - 0.9 < η < 0.9.  

Electrons and photons are measured in the central region: photons will be measured in PHOS, a 

high-resolution calorimeter 5 m below the interaction point. The PHOS is built from PBWO4 

crystals which have a high light output. 

 

The track measurement is performed with a set of six barrels of silicon detectors and a large 

Time Projection Chamber (TPC). The TPC has an effective volume of 88 m
3
. It is the largest 

TPC ever built. These detectors will make available information on the energy loss allowing 

particle identification too. In addition to this, a Transition Radiation Detector (TRD) and a Time-

of-Flight system will provide excellent particle separation at intermediate momentum. The Time-

of-Flight system (TOF) uses Multi-gap Resistive Plate Chambers (MRPCs) with a total of 160 

000 readout channels. A Ring Imaging Cherenkov detector will extend the particle identification 

capability to higher momentum particles. It covers 15% of the acceptance in the central area and 

will separate pions from kaons with momenta up to 3 GeV/c and kaons from protons with 

momenta up to 5 GeV/c.  

 

A Forward Multiplicity Detector (FMD) consisting of silicon strip detectors and a Zero Degree 

Calorimeter (ZDC) will cover the very forward region providing information on the charge 

multiplicity and energy flow. A honeycomb proportional counter for photon multiplicity (PMD) 

measurements is located in the forward direction on one side of the ALICE detector. 

  

The trigger system is complemented by a high level trigger (HLT) system which makes use of a 

computer farm to select events after read-out. In addition, the HLT system provides a data 

quality monitoring.  

  

The V0 system is formed by two scintillation counters on each side of the interaction point. The 

system will be used as the main interaction trigger. In the top of the magnet, A Cosmic Ray 

Detector (ACORDE) will signal the arrival of cosmic muons. 
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IV. White Dwarfs 

 
1. Short History of White Dwarfs 

 

First observations on white dwarfs began with Friedrich Wilhelm Bessel in 1834. At that time, 

Bessel noticed that the motion of Sirius, the brightest star in the night sky, was irregular. The star 

appeared somehow to wobble, to oscillate, thus suggesting that Sirius is one component star, but 

of binary system. After 10 years of observation (1834 - 1844), Bessel concluded that Sirius and 

the unseen pair are revolving one another with a period of 50 years. However, it was not until 

January 31
st
 in the year of 1862 that Alvan Graham Clark imaged for the first time the blurred 

companion (Sirius B) using a 18 inch telescope for the Dearborn Observatory. 

 

Sirius A and Sirius B have a luminosity ratio of about 10
4
; nevertheless the colours of the two 

seemed to be quite similar. Firstly, similar colours indicate similar temperatures, and therefore it 

was estimated that the radius of Sirius B was about 100 times smaller than Sirius A (since L = 

4πR
2
σT

4
). This fact was confirmed in 1915 by Walter Sydney Adams when he measured the 

spectrum of Sirius B and confirmed that it was a blue star. 

 

The first white dwarf had been discovered, an object as massive as the Sun, yet only as large as 

the Earth. Adams continued the research and by 1925 measured a gravitational redshift from 

Sirius B, confirming the very dense nature of this object (about 1.000.000 g/ cm
3
). This proof 

was also a successful test to Einstein‘s theory of relativity.  This then spurred a number of very 

important theoretical advancements to try and understand these objects, and in particular to 

understand the relativistic electron degeneracy equation of state (see e.g., Chandrasekhar 1937). 

 

Since the discovery of the first white dwarf, over 3000 of these objects have been discovered in 

our Galaxy. The Sloan Digital Sky Survey has already almost doubled this number, and will 

easily find 10000 new white dwarfs by the end of the Survey (Kleinman et al. 2004). With more 

new discoveries, the astrophysical uses of these objects continue to grow. 

 

2. Introduction 

 

The beauty of a white dwarf lies in its demonstration that a system at the length scale of Earth‘s 

radius and the mass scale of the sun can be inherently quantum. In a remarkable historical 

coincidence, the Schrodinger equation was formulated in the same year that the astrophysicist 

William A. Fowler (1926) wrote that ―a star was like a giant molecule in its ground state‖ 

supported against gravitational collapse by degeneracy pressure. Since then, this comparison has 

inspired a rich body of literature adapting the techniques of solving for the electronic structure of 

atoms and molecules to the study of degenerate compact stars such as white dwarfs and neutron 

stars. 
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Like that of an atom, the radius of a degenerate star is fully determined by the number of 

nucleons and electrons that it contains. One might ask why atomic nuclei are only stable up to 

nucleon numbers Z on the order of 10
2
 whereas white dwarfs have a nucleon number on the 

order of 10
57

. The difference is due to the short-range character of the strong nuclear force that 

supports atomic nuclei against degeneracy pressure, in contrast to the long-range nature of the 

gravitational force that binds together degenerate stars [2]. The stability criteria for non-

relativistic white dwarfs was derived by E.C. Stoner in 1930 [3], and a mass limit for ultra-

relativistic white dwarfs was discovered by Chandrasekhar in 1931 [4]. 

 

The purpose of this study is to give physical motivations for the use of Thomas-Fermi theory in 

studying white dwarfs and present extensions to the calculations of Stoner and Chandrasekhar 

using the Thomas-Fermi semi classical approximation, originally developed by Thomas and 

Fermi in 1927 to estimate the distribution of electrons in an atom [1]. In Section 2, it is 

summarized Stoner‘s mass-radius curve calculation and derive the same result purely from the 

ground state electronic structure of a many-body Hamiltonian that includes gravitational 

interactions. This method suggests an analogy between white dwarfs and the Bohr atom that is 

obscured in other derivations that treat gravitational pressure macroscopically. 

 

Section 3 formally introduces Thomas-Fermi theory and presents corrections to the energy of a 

white dwarf from Coulomb interaction, both non-relativistic and relativistic. Section 4 is a 

general discussion of the results from Thomas-Fermi calculations applied to the stability criteria 

of white dwarfs. 

 

At this point, a quick summary of stellar evolution theory is in store. In main sequence stars (like 

Sun), nuclear fusion of hydrogen to helium supplies the required thermal energy to stall 

gravitational contraction of a star, enabling it to attain a quasi-hydrostatic equilibrium. As the 

star advances in age, a further sequence of nuclear fusion reactions gets activated in its core - 

helium burning to carbon and oxygen, carbon burning to sodium and magnesium and so on, if 

the star is massive enough, till the formation of iron-rich core. Iron nucleus being the most stable 

one, subsequent nuclear burning cease to take place. As the core cools, it collapses under its own 

weight, till the electron density becomes so high that electron degeneracy pressure prevents 

further contraction. 

 

Degeneracy pressure is a consequence of quantum statistics in extremely dense matter. Pauli‘s 

exclusion principle (PEP) states that no two identical fermions can have the same state. 

Electrons, protons, neutrons, neutrinos, etc., being spin half particles, are fermions. According to 

PEP, in a gravitationally bound system like the iron-rich core of an evolved star, all the electrons 

cannot occupy the lowest energy level (unlike, what happens to identical bosons in Bose-Einstein 

condensates, e.g. He-4 superfluid). So, the energy levels are filled up with two electrons (one 
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with spin up state and the other with spin down) per orbital, as demanded by the PEP. Hence, 

more the density of electrons, higher is the energy level that gets to be occupied. 

 

Gravitational shrinking of such a dense core leads to an increase in electron density, thereby 

facing a resistance since the contraction implies putting electrons at higher energy levels. 

Therefore, in such a degenerate system, gravitational collapse instead of lowering the energy of 

the star tends to increase it. The resulting pressure against shrinking, arising out of PEP in such 

electron-rich dense matter is called electron degeneracy pressure (EDP). 

 

A white dwarf is a star that is in hydrostatic equilibrium not because of thermal pressure but due 

to the EDP that counteracts gravitational contraction. Fowler had assumed that electrons are 

moving non-relativistically inside the core and had shown that the EDP of a white dwarf is 

proportional to ρ
5/3

, where ρ is the density of the core [1]. 

 

3. What are White Dwarfs? 

 

Normal hydrogen burning stars (main-sequence stars) are in a state of hydrostatic equilibrium. 

The radially inward directed gravitational force is balanced by a thermal pressure exerted from 

the nuclear reactions occurring in the core of the star. The thermal timescales in a main-sequence 

star are much greater than dynamical timescales, and therefore the equilibrium holds as long as 

the star continues to burn hydrogen. However, a star eventually exhausts almost all of its core 

hydrogen supply and the previously established equilibrium is destroyed. The rate of this 

hydrogen burning depends almost entirely on the mass of the star, and the subsequent evolution 

of the star depends on its initial mass. The star will move through many post-main sequence 

stellar evolutionary stages, such as the sub-giant branch, red giant branch, horizontal branch (or 

red giant clump in the case of stars with initial masses < 2 Mʘ), asymptotic giant branch, 

planetary nebula stage, and finally the white dwarf stage (in the case of stars with initial masses 

≤ 7 Mʘ). Details of each of these stages can be found in the very thorough review of Chiosi, 

Bertelli&Bressan (1992). The end product of this chain of events is a ―stellar cinder‖ which fades 

with time, becoming dimmer by radiating away any remaining stored thermal energy. It is 

illustrated the locations of these phases and the evolution of a single star which will produce a 

white dwarf in a Hertzsprung-Russell (HR) diagram in the figure below. 

 

With all of the nuclear fuel exhausted, a white dwarf cannot generate pressure from reactions in 

the core. Earlier in the evolution, all of the hydrogen (and helium) were burnt and converted into 

carbon and oxygen. The resulting C/O core cannot support itself from gravitational contraction 

and therefore gravity compresses the star. The electrons in the core are packed together tighter 

and tighter. The Pauli exclusion principle only allows two electrons, of different spin, to occupy 

any energy level and therefore all of the energy levels from the ground level up are filled and the  
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Figure 3.1: A Hertzsprung-Russell diagram is shown with the main sequence, post main sequence stellar 

evolutionary phases, and white dwarf cooling phase indicated. The evolution shown is for a 1 Mʘ star 

electron gas is said to be degenerate. Invoking the Uncertainty Principle, the space available to 

each electron, ∆x, becomes very small in a white dwarf and therefore the momentum, p, is very 

large. It is this momentum that generates a degeneracy pressure that supports the star from 

further collapse. The typical mass of the resulting star is 0.6 Mʘ, with a radius of 10
4
 km (i.e., 

ρ~10
8
 kg/m

3
). More detailed properties of white dwarfs can be found in the excellent textbook by 

Shapiro &Teukolsky (1983). 

 

Several interesting properties exist for degenerate matter. For example, if the mass of the white 

dwarf is increased, then the electrons are forced to ―squeeze‖ together even more and 

consequently the radius of the star actually decreases. Therefore, more massive white dwarfs are 

smaller. Another property of white dwarfs, determined by Chandrasekhar (1937), is that they 

have a maximum mass. If enough mass is piled onto a white dwarf, the velocity of the electrons 

continues to increase until they approach the speed of light, at which point degenerate electron 

pressure can no longer support the star from further collapse. This maximum mass can be easily 

shown to be ~ 1.4 Mʘ, and if reached, results in a type Ia supernova explosion of the star. These 

explosions occur when massive white dwarfs are members of close binary systems, in which the 

white dwarf accretes mass from a companion, pushing it over what is now called the 

―Chandrasekhar limit". Interestingly, an even more extreme type of degeneracy pressure governs 

the stability of neutron stars, the end products of more massive initial main-sequence stars that 

do not produce white dwarfs. In that regime, the densities are so high (ρ~10
17

 kg/m
3
) that protons 

and electrons will combine through inverse beta decay to produce neutrons which support the 
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star through degenerate neutron pressure. Observationally, most neutron stars are found to have a 

mass of about 1.5 Mʘand a radius of only 10 km! More information on neutron stars can be 

found in the review by Srinivasan (2002). 

White dwarfs are found in many flavors. The most common spectral designations are DA, for 

those stars showing prominent hydrogen Balmer absorption features as in A type main-sequence 

stars, and DB, for those showing prominent helium (I) lines as in B type main-sequence stars. 

The ―D‖ designates that the object is degenerate. Very hot white dwarfs (> 80,000 K) just 

beginning their evolution from the planetary nebula stage are labeled DO and show He (II) 

absorption lines. At the opposite regime of very cool temperatures (< 5,000 K), both hydrogen 

and helium lines are invisible in the spectra of white dwarfs; these featureless spectra are 

designated DC. Slightly hotter helium rich white dwarfs are also designated DC, as they also do 

not show any absorption lines. 

 

Other designations include DQ white dwarfs (those with carbon lines), DH white dwarfs 

(magnetic white dwarfs) and DZ white dwarfs (those with other metal lines). Example spectra of 

each of these classes can be found in the first data release of the Sloan Digital Sky Survey 

(Kleinman et al. 2004). 

 

The chemical evolution of white dwarfs is quite complicated and not completely understood (see 

e.g., Bergeron, Ruiz, & Leggett 1997). White dwarfs are believed to change spectral types, 

perhaps several times, through their evolution. The distribution of white dwarfs of various 

spectral classes as a function of temperature shows several gaps. For example, the DB gap, 

located at temperatures between 30,000 and 45,000 K, contains no DB white dwarfs. DB white 

dwarfs are, however, found both above and below the gap. At much cooler temperatures, 

between 5,000 and 6,000 K, a non-DA gap exists where only DA white dwarfs are present. 

Overall, the ratio of DA to non-DA white dwarfs is much greater (20:1) than at hot temperatures 

(~30,000 K). However, the DB and DC spectral type are abundant at cooler temperatures and the 

ratio drops to only 2:1 at temperatures under 10,000 K. It is believed that DA white dwarfs can 

have either thin (10
-10

Mʘ) or thick (10
-4

Mʘ) hydrogen surface layers. In the cases of thick 

surface layers, the stars will always remain of DA spectral type. However, for thin hydrogen 

layers, it is possible that the hydrogen layer mixes with the underlying more massive helium 

mantle (10
-2

Mʘ) and is drowned out. This convective mixing requires cool temperatures and is a 

possible explanation for the abundance of cool non-DA white dwarfs. The non-DA gap may be 

explained by hydrogen accretion from the interstellar medium or from some yet unknown type of 

dilution or mixing of hydrogen and helium in that narrow temperature range. 

 

More information on these issues as well as other parameters of white dwarfs can be found in the 

review paper by Fontaine, Brassard, & Bergeron (2001). Continued observations, such as those 

presented in this thesis, will help resolve these problems. 
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4. Interesting about white dwarfs 

 

Over 99% of all stars will eventually end their lives as white dwarfs. These faint stellar remnants 

can be used in many different investigations. For example, white dwarfs cool with time in a 

predictable way. Recently, this white dwarf cooling process has been used to date the globular 

star cluster M4 (Hansen et al. 2004; Hansen et al. 2002) and independently determine the age of 

the Galactic halo. The same study also used white dwarfs to determine the mass function of the 

cluster above the main-sequence turn-off (Richer et al. 2004; Richer et al. 2002). Since all stars 

with a mass above 0.8 Mʘ have evolved off the main-sequence in a 12 Gyr population, white 

dwarfs represent our only link to the distribution of stars (i.e., the initial mass function) of 

intermediate and massive stars in these systems. White dwarfs are also astrophysical important 

when considering the chemical evolution of the Galaxy. All stars with an initial mass up to 7 or 8 

Mʘ will end up becoming white dwarfs with a final mass less than 1.4 Mʘ. Therefore, many 

solar masses of material will be expelled into the interstellar medium during a star's evolution 

and therefore affect future nucleo-synthesis and star formation. A characterization of this mass 

loss, the initial-final mass relationship, remains today as one of the most poorly understood 

aspects of stellar evolution. 

 

Recently, the possible nature of white dwarfs as Galactic dark matter candidates has been 

suggested by Alcock et al. (2000). Microlensing events towards the Large Magellanic Clouds 

suggest that approximately 20% of our Galactic halo is filled with 0.5 Mʘ objects. A successful 

search for these objects by Oppenheimer et al. (2001) temporarily solved this long-standing 

problem. However, reanalysis of the results by several groups suggest that in fact Oppenheimer's 

population is not of halo origin and is more likely from a thick disk. Still, white dwarfs have not 

been excluded as a possible component of the Galactic dark matter. 

 

Although white dwarfs are faint, studying them is becoming easier with larger telescopes and 

improved instrumentation. The few reasons listed above do not do justice to the number of 

interesting scientific developments that have resulted from studying white dwarfs. These studies 

range from using astro-seismology to probe the inner structure of these objects (see e.g., 

Kawaler1995, Fontaine & Brassard 1994), to improving models of white dwarf cooling and 

atmospheres (Hansen 1999; Bergeron, Saumon&Wesemael 1995; Wood 1995), to understanding 

the physics of matter at extreme densities, to using white dwarfs to determine the lower mass 

limit to type II supernovae (see e.g., Kaspi&Helfand 2002). 

 

5. Summary of White Dwarfs in the Field 

 

A 6-year baseline of imaging of the globular star cluster M4 has allowed us to separate out the 

cluster stars from the background spheroid population. Over this timescale, distant extragalactic 

sources have not moved and are identified using image morphology criteria. It is established a 
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zero-motion frame of reference using these galaxies and search for halo white dwarfs based on 

their morphology and kinematics. It was found that distinguishing faint galaxies from field stars 

is impossible when based solely on proper motions, and that an index of stellarity is crucial in 

separating the two classes. Based on the reduced proper motion diagram, it was identified nine 

thin/thick disk and three spheroid white dwarfs in these data. These numbers are consistent with 

the expected contribution of the conventional populations along the line of sight. Additionally, 

2.5 dark halo white dwarfs are expected in these data based on a 20% white dwarf dark halo and 

are not found. The Poisson probability of getting zero events when 2.5 are expected is about 8%, 

and therefore our conclusion of not needing a dark halo population of white dwarfs to explain the 

present data is marginal. A similar study with the Advanced Camera for Surveys (ACS) on HST 

would be sensitive to many more potential dark halo white dwarfs and is desirable given the 

importance of this problem. 

The extragalactic reference frame also allows us to perform two other important measurements. 

First, this fixed frame gives us an independent measurement of the fundamental Galactic 

constant, Ω0= θ0/R0 = 25.3 ± 2.4 km/s/kpc. This provides a velocity of the Local Standard of Rest 

vLSR= θ0= 203 ± 23 km/s at R0 = 8.0 ± 0.5 kpc, in agreement with independent studies. Secondly, 

the galaxies give us a direct measurement of M4's absolute proper motion, μα= -12.26 ± 0.47 

mas/yr, μδ = -18.95 ± 0.48 mas/yr, also in good agreement with the latest studies. 

 

6. Chandrasekhar limit and compact objects 

 

In his investigations, Chandra incorporated special relativity in the analysis of white dwarfs, and 

found that the EDP is proportional to ρ
4/3 

instead, demonstrating that the relativistic degeneracy 

pressure does not increase as rapidly as in Fowler‘s case. Performing an accurate study of the 

relativistic problem of a dense star ruled by a polytropic equation of state, in which gravity is 

countered by the EDP, he arrived at the celebrated Chandrasekhar mass limit [2]: 

𝑀𝐶𝑕 =
0.2

 𝑚𝑝𝜇𝑒 
2  

ℏ𝑐

𝐺
 

3/2

(1) 

 

where ħ, G, c, mp and µe are the reduced Planck‘s constant, Newton‘s gravitational constant, 

speed of light, mass of a proton and mean molecular weight per electron, respectively. It is 

remarkable that such a significant result concerning stars should be expressible in terms of 

fundamental quantities (except for µe). In white dwarfs, the value of µe is about 2, so that from 

eq. (1) one finds the limit to be MCh ≈1.4 Mʘ, where Mʘ = 2 × 1030 kg is the Sun‘s mass. 

 

The Chandrasekhar mass limit implies that no white dwarf with mass greater than this limit can 

hold out against gravitational collapse. So far, all the white dwarfs discovered (e.g. Sirius B, the 

companion star to Sirius) in the cosmos, have mass less than MCh. For masses beyond this limit, 

two prescient ideas were put forward independently, that played important roles later - one of 

Landau [6], before the discovery of neutrons by Chadwick in 1932 and the other by Baade and 

Zwicky [8,9], after the discovery. Landau had speculated that for stellar cores whose mass 
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exceeded MCh, the density would become so large due to shrinking that the atomic nuclei in the 

core would come in contact with each other – the whole core turning into a giant nucleus [6]. 

Baade and Zwicky, while attributing the origin of cosmic rays to stellar explosions called 

supernovae, correctly identified the energy liberated due to sudden decrease in the gravitational 

potential energy (as the core collapses rapidly to form a neutron star of radius ~10 km) as the one 

that powers supernova explosion [8,9]. 

 

7. Short Theoretical approach 

 

Derivation of non-relativistic mass-radius relation 

 

A. Review of the Macroscopic Calculation 

 

By balancing the degeneracy pressure of the electrons in a white dwarf against the inward 

gravitational pressure from the nucleon mass, one can derive a semi-realistic formula for the 

radius of a white dwarf in terms of its mass, its nucleon-to-electron ratio, and fundamental 

constants. The simplest calculation assumes local charge neutrality and nonrelativistic electrons 

[1]. It is modeled the white dwarf as a uniform-density sphere of N nucleons and fNelectrons 

confined to a radius R. Treating the electrons as a fermionic gas at zero temperature in a 3-

dimensional infinite well, the outward degeneracy pressure is found to be 

𝑃𝑑𝑒𝑔 =
2

5

ℏ2

2𝑚𝑒
 
𝑓𝑁

𝑉
 

5/3
 3𝜋2 2/3(1) 

where V is the volume of the star. The inward Newtonian gravitational pressure of the nucleons 

is given by 

𝑃𝑔𝑟𝑎𝑣 = −
3

5
𝐺 𝑁𝑚𝑝 

2  4𝜋 1/3

 3𝑉 4/3(2) 

Balancing pressures and taking the mass M of the star to be Nmp, we find the stable radius of the 

star to be 

𝑅 ≈
ℏ2𝑓5/3

𝐺𝑚𝑒𝑚𝑝
5/3𝑀1/3(3) 

Note that the radius in Eq. 3 decreases as the star becomes heavier. Since the kinetic energy of 

the electron Fermi gas increases under adiabatic compression, the non-relativistic assumption 

breaks down for massive white dwarfs. In 1931, Chandrasekhar calculated the mass of a stable 

white dwarf with local charge neutrality using the equation of state for ultra-relativistic 

electrons,P ∝ ρ
4/3

. This lead to the surprising discovery of a maximum mass of 1.4M⊙ for stable 

white dwarfs, beyond which gravitational collapse occurs until the star is stabilized again by 

neutron degeneracy pressure [4]. 
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B. The Fermi Surface Calculation of the White Dwarf Radius 

 

Despite the elegance of the derivation leading to Eq. 3, it is somewhat unsatisfying that 

degeneracy pressure and gravitational pressure were treated separately. Here we present an 

alternative approach, in which the Fermi surface induced by a many-particle Hamiltonian 

including the gravitational potential leads to the radius of a white dwarf. 

For simplicity, consider a white dwarf composed of N protons and N electrons. Assuming that 

the Coulomb force binds each electron to a single proton, in a first approximation the star can be 

considered a degenerate gas of N neutral spin -1/2 fermions with inertial mass me and 

gravitational mass mp. Note that since the kinetic energy is almost purely due to the electron, we 

need not consider the contribution from the spin -1/2 proton to the degeneracy pressure. In this 

model, the many-particle Hamiltonian of the neutral particles is 

𝐻 =  
𝑝𝑖

2

2𝑚𝑒
−  

𝐺𝑚𝑝
2

𝑟𝑖𝑗
1<𝑖<𝑗≤𝑁

𝑁
𝑖=1 (4) 

which can be rewritten as 

𝐻 =     
𝑝𝑗

2

2(𝑁−1)𝑚𝑒
−

𝐺𝑚𝑝
2

2𝑟𝑖𝑗
 𝑗≠𝑖  𝑁

𝑖=1 ≡  𝑕𝑖
𝑁
𝑖=1 (5) 

As pointed out by [1], hi represents the Hamiltonian of N − 1 non-interacting particles each with 

inertial mass (N − 1)me and gravitational mass mp/2 in the gravitational field of the i
th

 particle, 

which is fixed and has gravitational mass mp. The suggestive form of the hi tempts us to calculate 

the ground state of hi by filling the N − 1 lowest single-particle energy levels of a 1/r potential. 

Formally, the single-particle spectrum is identical to that of the hydrogen atom under the 

substitutions  

𝑒2 → 𝐺  
1

2
𝑚𝑝 𝑚𝑝 and𝑚𝑒 →  𝑁 − 1 𝑚𝑒  

𝜖𝑛 = −
 𝑁−1 (𝐺2𝑚𝑝

4𝑚𝑒)

8ℏ2𝑛2 (6) 

where each ϵnhas a degeneracy of 2n
2
. Thus, 

𝑁 =  2𝑛2𝑛𝐹
𝑛=1 ≈

2𝑛𝐹
3

3
(7) 

from which we can solve for the highest occupied level nF. The total ground state energy in the 

gravitational field of the i
th

particle is then 

𝐸𝑖 =  2𝑛2𝜖𝑛
𝑛𝐹
𝑛=1 ≈ −

𝑁𝐺2𝑚𝑝
4𝑚𝑒𝑛𝐹

4ℏ2
≈ − 

3

2
 

1/3 𝑁4/3𝐺2𝑚𝑝
4𝑚𝑒

4ℏ2
 (8) 

Furthermore, using the relation 

 𝑟𝑛 ≈
3

2
𝑛2𝑎0(9) 

in the limit n ≫ ℓ, where a0 is the gravitational ―Bohr radius‖ of the star, we see that the radius R 

and the mass M ≈ N/mpof the white dwarf are related by 

𝑅 =  𝑟𝑛 ≈ 3  
3

2
 

2/3 2ℏ2

𝐺𝑚𝑝
5/3

𝑚𝑒𝑀1/3
(10) 

which agrees with Eq. 3 up to a scaling factor. Strictly speaking, Eq. 10 only describes the radius 

of a zero-temperature fermionic gas under one of thehi‘s in the sum in Eq. 5. If the hi‘s were 
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independent, we could fill each hiup to its Fermi level and find the total ground state energy to be 

NEi. In reality, the hi‘s share common coordinates and are not truly independent. [1] shows that, 

therefore, the ground state energy NEiis a lower bound on the actual ground state energy. 

Nonetheless, the microscopic derivation of the white dwarf ground state energy and radius 

motivates further investigation into the similarities between atoms and stars. We extend these 

techniques in the next section to estimate the effect of Coulomb forces on the ground state 

energy. 

 

Accounting for Coulomb Interactions 

 

A. Thomas-Fermi Theory 

 

The Coulomb interaction is essential for keeping the electrons in a white dwarf close to the 

nuclei, thereby maintaining the local neutrality condition assumed above [1]. Although we could 

proceed with the approach from Section 2B and model the effective Coulomb interactions by 

adding another term to hi, it soon becomes worthwhile to introduce a semiclassical 

approximation. 

The basis of the Thomas-Fermi approximation is the postulate that electrons in a potential V(r) 

are uniformly distributed in phase space with two electrons per (2πħ)
3
 of volume. This 

assumption is exactly true for free electrons; in a potential, the approximation is valid when 

thede Broglie wavelength of the particles is much shorter than the length scale over which the 

potential varies significantly. For every volume of coordinate space d3r, we define a local Fermi 

momentum pF(r) and a volume of occupied momentum space, (4/3)πp
3

F(r), such that the total 

volume of occupied phase space in a sphere of radius R is (4π/3)
2
R

3
p

3
F. Equating the number of 

electrons in phase space to that in coordinate space, we find an expression for the local electron 

number density in terms of the local Fermi momentum: 

𝑛 𝑟 =
𝑝𝐹

3 (𝑟)

3𝜋2ℏ3(11) 

Note that the r dependence in pF(r) arises from the spatial variation of the potential V (r). 

Similarly, we define a local Fermi energy functional 

𝐸𝐹 𝑛(𝑟) =
𝑝𝐹

2 (𝑟)

2𝑚𝑒
+ 𝑉(𝑟)(12) 

EF must be constant in coordinate space at equilibrium; otherwise, we could lower the ground 

state energy of the system by moving a particle from a region of higher EF to one of lower EF [1]. 

As an illustration of the Thomas-Fermi approximation, consider the total ground state energy 

functional for a white dwarf ignoring Coulomb contributions, given by the sum of kinetic and 

gravitational terms: 

𝐸   𝑛 = 𝐸𝐾
      𝑛 + 𝐸𝐺

     (𝑛)(13) 

where𝐸   𝑛  denotes a functional of n(r) and 

𝐸𝐺
      𝑛 = −

𝐺𝑚𝑝
2

2
 

𝑛 𝑟 𝑛(𝑟`)

 𝑟−𝑟` 

𝑅

0
𝑑3𝑟𝑑3𝑟`   (14) 
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The kinetic energy functional in the ground state is obtained by integration in a volume of phase 

space d
3
rd

3
p up to the local Fermi momentum [1]: 

𝐸   𝑛 =   2
𝑑3𝑟𝑑3𝑝

8𝜋3ℏ3

𝑝2

2𝑚𝑒
= 𝜅

ℏ2

𝑚𝑒
 𝑛

5

3(𝑟)𝑑3𝑟
𝑅

0

𝑝𝐹

0

𝑅

0
(15) 

where κ = (3π
2
/10)(3/π)

2/3
 results from integrating over d

3
p. Using Eq. 13, we can determine the 

number density and ground state energy by minimizing the density functional ˜E[n] over all n(r). 

It is easily verified that doing so in the case of constant n(r) and solving for the radius of 

minimum energy reproduces Eq. 3 up to a constant factor. 

 

The Coulomb corrections 

 

A. The non-relativistic Coulomb correction 

 

In Section 2B, we considered the entire star as a single atom bound by gravity in order to study 

the gravitational effect on the ground state energy. Unlike gravity, electrostatic forces cancel out 

globally and therefore should be considered at atomic length scales. Up to this point, we have 

assumed all charges to be smeared out evenly in a neutral electron-nucleon fluid. We now 

collapse each nucleus into a point charge Ze surrounded by a uniform cloud of Z electrons. Each 

nucleus and its associated electrons are confined to a spherical cell of radius Rcell, and we ignore 

any Coulomb interactions between cells. Since realistic white dwarf stars have a characteristic 

density of 10
6
g/cm3 and therefore are around 10

6
 times denser than ordinary matter, Rcell is of 

order 10
-2

a0, where a0 is the Bohr radius [1]. 

 

1. With uniform electron density within cells 

 

In a first calculation of the Coulomb correction, we take the electron number density within each 

cell to be the average of n(r) over the cell volume, in which case the Thomas-Fermi approach is 

trivial. Calculating the Coulomb energy of a uniformly charged sphere interacting with a point 

nucleus, we find 

𝐸𝑒−𝑛(𝑅𝑐𝑒𝑙𝑙 ) = −
3

2

𝑍2𝑒2

𝑅𝑐𝑒𝑙𝑙
(16) 

while the electron-electron interaction energy is given by 

𝐸𝑒−𝑒(𝑅𝑐𝑒𝑙𝑙 ) =
3

5

𝑍2𝑒2

𝑅𝑐𝑒𝑙𝑙
(17) 

Thus, from a few simple calculations in basic electrostatics, we find that the first-order correction 

to the energy per cell is  

𝐸𝐶
 1 (𝑐𝑒𝑙𝑙) = −

9

10

𝑍2𝑒2

𝑅𝑐𝑒𝑙𝑙
= −

9

10
 

4𝜋𝑛𝑎𝑣𝑔

3
 

1/3

𝑍5/3𝑒2(18) 

and the total first-order energy correction for the white dwarf is 

𝐸𝐶
 1 = −

9

10
 

4𝜋

3
 

1/3

 𝑛
4

3(𝑟)𝑑3𝑟
𝑅

0
(19) 
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To estimate the size of the Coulomb correction, recall that the total kinetic energy is equal in 

magnitude to the total energy E[star] according to the Virial theorem. 

Thus, we can consider the ratio of the Coulomb energy per cell to the kinetic energy per cell. 

From Eq. 15, the kinetic energy per cell at zeroth order in the Coulomb correction is 

𝐸𝜅
 0  𝑐𝑒𝑙𝑙 ≈

ℏ2

𝑚𝑒
𝑛𝑎𝑣𝑔

5

3 𝑅𝑐𝑒𝑙𝑙
3 ≈ 𝑒2 𝑎0

𝑅𝑐𝑒𝑙𝑙
2 𝑍

5

3(20) 

where a0 is the usual Bohr radius. Thus, 

𝐸𝐶
 1 

𝐸(𝑠𝑡𝑎𝑟 )
≈

𝐸𝐶
 1 

(𝑐𝑒𝑙𝑙 )

𝐸𝜅
(0)

(𝑐𝑒𝑙𝑙 )
≈

𝑅𝑐𝑒𝑙𝑙

𝑎0
𝑍1/3 ≈

𝑅

𝑎0
 
𝑍

𝑁
 

1/3

(21) 

where N is the total number of cells. We see that for the Coulomb correction to be much less 

than the total energy, each cell must be compressed to a radius much less than the Bohr radius, 

which is in fact the case for white dwarfs [1]. 

 

2. A refined estimate of the electron density within each cell 

 

We now apply the Thomas-Fermi approximation to show that in a self-consistent treatment of 

the Coulomb interactions, the electron density within each cell must be non-uniform. Our 

starting point is the electron Fermi energy functional E
F

e (Eq. 12) with the Coulomb potential 

given by −V(r)/e. (The gravitational contribution to V(r) has been absorbed by the parameter 

Rcell, which depends on the gravitational compression.) Note that −V(r)/e must satisfy the 

Poisson equation 

𝛻2𝑉 𝑟 = 4𝜋𝑒2  𝑛𝑝 𝑟 − 𝑛𝑒 𝑟  (22) 

For a single isolated cell with nuclear charge Ze, the potential would simply be −Ze
2
/r. However, 

a lattice of net neutral, non-interacting cells such as a white dwarf is subject to the condition that 

the potential and its radial derivative vanish at the boundary of each cell. Thus, we define a 

dimensionless function ϕ(r) by 

𝑒2𝑍𝜙(𝑟)

𝑟
= 𝐸𝑒

𝐹 − 𝑉(𝑟)(23) 

and a dimensionless coordinate 

𝜂 =
𝑟

𝑏
(24) 

Where𝑏 =  3𝜋 2/3 𝜆𝑒

𝛼
2−7/3𝑍−1/3 and λe is the electron Compton wavelength. The Poisson 

equation becomes 

𝑑2𝜙𝜂

𝑑𝜂 2 =
𝜙𝜂3/2

𝜂1/2 (25) 

Withϕ(0) = 1 for a point nucleus. The self-consistent electron distribution within the cell is given 

by [6]. 

𝑛𝑒 𝜂 =
𝑍

4𝜋𝑏3  
𝜙 𝜂 

𝜂
 

3

2
   (26) 

Fig. 1 shows the electron density obtained by integrating Eq. 25 with appropriate boundary 

conditions. We see that the electron distribution is sharply peaked at the center of the cell and 
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quickly drops to zero, suggesting that the Coulomb energy is lower than in the uniform-density 

case. However, since regions of lower potential must have higher Fermi kinetic energy for the 

total Fermi energy to be spatially constant, relativistic effects become non-negligible near the 

center of the cell. 

 
Figure 7.1: The electron number density nein units of the average electron number density n0 within a cell as a 

function of the radial coordinate x = r/λπ, where the pion Compton wavelength is used for comparison with Fig. 2. 

Results for cells with Iron nuclei were obtained by numerical integration of the non-relativistic TF equation 25. 

 

B. The relativistic Coulomb correction 

 

The non-relativistic treatment of the electrons breaks down for highly-compressed cells, as high 

electron kinetic energies are required to balance inward gravitational pressure. Feynman, 

Metropolis, and Teller [7] (FMT) have shown that the Thomas-Fermi model can be applied 

relativistically within cells to obtain the equation of state for compressed matter. Eq. 12 for the 

electron Fermi energy is replaced by the relativistic Fermi energy 

𝐸𝑒
𝐹 =  𝑐2 𝑝𝑒𝐹 2 + 𝑚𝑒

2𝑐4 −𝑚𝑒𝑐
2 + 𝑉(𝑟)(27) 

Unfortunately, the point-like nucleus approximation adopted in the previous section now leads us 

to a non-integrable expression for the electron density ne(r) at the origin, given by 

𝑛𝑒(𝑟) =
 𝑝𝑒

𝐹 
3

3𝜋2ℏ3 =
1

3𝜋2ℏ3𝑐3  𝑉 
2 + 2𝑚𝑒𝑐

2𝑉  
3/2

(28) 

where 𝑉 = 𝐸𝑒
𝐹 − 𝑉(𝑟). 

Following the approximation given in [6] for the nucleus size, we take the protons to be 

uniformly distributed up to a radius Rcin each cell, defined by  

𝑅𝑒 = Δ𝜆𝜋𝑍
1/3(29) 

Where𝜆𝜋 =
ℏ

𝑚𝜋 𝑐
 is the pion Compton wavelength and Δ is a factor proportional to the nuclear 

density that is is 1 for ordinary nuclei. The proton density is therefore 

𝑛𝑝(𝑟) =
𝑍

4

3
𝜋𝑅𝑒

3 𝜃(𝑟 − 𝑅𝑒) =
3

4𝜋 Δ𝜆𝜋  3 𝜃(𝑟 − 𝑅𝑒)(30) 

Whereθ is the Heaviside function. 
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As before, each cell is net neutral and there exist no electric fields between cells, so we impose 

the boundary conditions V (Rcell) = 0 and dV/dr|r=Rcell= 0 on the solutions to the Poisson‘s 

equation for the potential 22. 

Introducing the dimensionless variables x = r/λπ, xc= Rc/ λπ χ/r =𝑉 (r)/ ℏ𝑐, we substitute the 

particle densities (30) and (28) into (22) to obtain the relativistic version of Eq. 25: 

1

3𝑥

𝑑2𝜒(𝑥)

𝑑𝑥 2 = −
𝛼

Δ3 𝜃 𝑥𝑒 − 𝑥 +
4𝛼

9𝜋
 
𝜒2(𝑟)

𝑥2 + 2
𝑚𝑒

𝑚𝜋

𝜒(𝑥)

𝑥
 

3/2

(31) 

Fig. 2 shows the electron distribution in a cell obtained by integrating the differential equation 

(31) with the appropriate boundary conditions. Rotondo et al. show in [5] that Eq. 31 leads to a 

maximum in the electron Fermi energy when Rc= Rcell. In contrast, the Fermi energy obtained 

from Eq. 25 grows without bound as Rcell → 0 since the cell is infinitely compressible when the 

nucleus is a point charge. 

 

8. Instability of compressed white dwarfs 

 

We now review some results from the recent literature examining the behavior of white dwarfs 

in the limit of extremely high compression using the relativistic Thomas- Fermi equation. 

 

At high mass densities and immense electron Fermi pressures, electrons and protons combine to 

form neutrons. This process, known as inverse beta decay, occurs 

 
Figure8.1: The electron number density ne in units of the average electron number density n0 within a cell as a 

function of the radial coordinate x/λπ, obtained by numerical integration of the relativistic FMT equation. Results for 

cells composed of Iron nuclei are shown. Adapted from [6]. 



Quantum Plasmas 42 
 

 
Figure 8.2: The electron Fermi energies with a cell as a function of the cell radius using the nonrelativistic and 

relativistic differential equations. R corresponds to Rcelland Npto Z in our notation. The results agree at large radii 

(low compression) but the non-relativistic energy diverges as R→ 0. Adapted from [5]. 

 

when the kinetic energy of the electons exceeds the massenergy difference between a nucleus (Z, 

A) and a nucleus (Z-1, A). Empirical values of the critical inverse beta decay energy ϵcritfor 
4
He 

and 
56

Fe are around 20.6 MeV and 3.7 MeV, respectively [6]. In the uniform density 

approximation for the electron fluid, the critical density is given by 

 

𝜌𝑐𝑟𝑖𝑡
𝑢𝑛𝑖𝑓

=
𝑍

𝐴

𝑚𝑝

3𝜋2ℏ3𝑐3
  𝜖𝑐𝑟𝑖𝑡  

2 + 2𝑚𝑒𝑐
2𝜖𝑐𝑟𝑖𝑡  

3/2(1) 

 

Usingρ = (A/Z)mNnewith nein terms of the relativistic Fermi momentum. The values for 
4
He and 

56
Fe are around 1.37 × 10

11
 and 1.14 × 10

9
 g cm

−3
, respectively. 

 

Improving upon the uniform-density estimate, Rueda et. al [6] found numerical solutions for the 

electron density from Eq. 31 subject to the equilibrium condition μn= μe+ μp, where μ is the 

chemical potential of each species. As the chemical potential is proportional to the Fermi energy, 

the equilibrium condition is 

 

𝐸𝑛
𝐹 =  𝑐2 𝑝𝑛𝐹 2 + 𝑚𝑛

2𝑐4 −𝑚𝑛𝑐
2 =  𝑐2 𝑝𝑝𝐹 

2
+ 𝑚𝑝

2𝑐4 −𝑚𝑝𝑐
2 − 𝑉 𝑟 + 𝐸𝑒

𝐹(2) 

 

Where𝑝𝑛
𝐹(𝑛𝑛 𝑟 )is determined by Eq. 11 and V (r) isnegative because of the positive charge of 

the proton. 

 

This condition determines the neutron density nn(r). For each mass number A, there also exists a 

numerical relation between the number of protons per nucleus Z and the electron Fermi energy 

E
F

e. Since the density of the star is determined by E
F

e, A, and Z, numerical values of the critical 

density for inverse beta decay can be obtained using this method. Rueda et al. [6] found values of 
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1.2×10
12

 and 8.6×10
8
 g cm

−3
 for 

4
He and 

56
Fe, which is greater for the lighter nuclei and less for 

the heavier nuclei than in the uniform approximation. 

As a final remark, we mention that general relativistic corrections to the equations of state for a 

white dwarf emerge as another source of instability at high densities. While we regret that the 

Tolman-Oppenheimer- Volkov (TOV) equations of equilibrium for general relativistic matter are 

beyond the scope of this discussion, it is worthwhile to mention that we can derive a post- 

Newtonian equation satisfied by the chemical potential within a cell by expanding the TOV 

equations to first order in the ratio of pressure to energy density of the cell and GM/(c
2
r). 

Numerical solutions to the post- Newtonian equations show that in addition to the critical mass 

imposed by beta decay stability, a white dwarf has a critical mass due to the general relativistic 

corrections. 

 

Interestingly, Rueda et al. [6] have found that the onset of general relativistic instability for 
4
He 

white dwarfs occurs at lower densities than for beta decay instability, whereas the behavior of 
56

Fe white dwarfs is the opposite. Thus, using TF theory, we see that the instability of stars of 

light material is due to general relativistic effects while that of heavy material is due to inverse 

beta decay. 

 

9. Observations 

 

What should be mentioned here is that important studies were made upon the Gemini 

constellation and the NGC 2099 cluster. We leave here some references for more detailed studies 

of white dwarfs and the information that can be obtained from these studies. As a starting point, 

it can be found in J.S. Kalirai, Astrophisics in White Dwarfs (2004), Kalirai et al. 2001c and 

Murowinski, R. et al. 2002. 
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V. Neutron Stars 
 

1. Magnetars 

 

Neutron stars-such as Magnetar are the densest material objects known, packing slightly more 

than the sun‘s mass inside a ball just 20 kilometers across. Based on the study of SGRs, it seems 

that some neutron stars have magnetic fields so intense that they radically alter the material 

within them and the state of the quantum vacuum surrounding them, leading to physical effects 

observed nowhere else in the universe. 

 

Because The MARCH 1979 Burst was so bright, theorists at the time reckoned that its source 

was in our galactic neighborhood, hundreds of light-years from Earth at most. If that had been 

true, the intensity of the x-rays and gamma rays would have been just below the theoretical 

maximum steady luminosity that can be emitted by a star. That maximum, first derived in 1926 

by English astrophysicist Arthur Eddington, is set by the force of radiation flowing through the 

hot outer layers of a star. If the radiation is any more intense, it will overpower gravity, blow 

away ionized matter and destabilize the star. Emission below the Eddington limit would have 

been fairly straightforward to explain. For example, various theorists proposed that the outburst 

was triggered by the impact of a chunk of matter, such as an asteroid or a comet, onto a nearby 

neutron star. But observations soon confounded that hypothesis. Each spacecraft had recorded 

the time of arrival of the hard initial pulse. 

 

These data allowed astronomers, led by Thomas Lytton Cline of the NASA Goddard Space 

Flight Center, to triangulate the burst source. The researchers found that the position coincided 

with the Large Magellanic Cloud, a small galaxy about 170,000 light-years away. More 

specifically, the event‘s position matched that of a young supernova remnant, the glowing 

remains of a star that exploded 5,000 years ago. Unless this overlap was pure coincidence, it put 

the source 1,000 times as far away as theorists had thought and thus made it a milliontimes 

brighter than the Eddington limit. In 0.2 second the March 1979 event released as much energy 

as the sun radiates in roughly 10,000 years, and it concentrated that energy in gamma rays rather 

than spreading it across the electromagnetic spectrum. No ordinary star could account for such 

energy, so the source was almost certainly something out of the ordinary either a black hole or a 

neutron star. The former was ruled out by the eight-second modulation: a black hole is a 

featureless object lacking the structure needed to produce regular pulses. The association with 

the supernova remnant further strengthened the case for a neutron star. Neutron stars are widely 

believed to form when the core of a massive but otherwise ordinary star exhausts its nuclear fuel 

and abruptly collapses under its ownweight, thereby triggering a supernova explosion.Identifying 

the source as a neutron star did not solve the puzzle;on the contrary, it merely heightened the 

mystery. Astronomers knew several examples of neutron stars that lie within supernova 

remnants. These stars were radio pulsars, objects that are observed to blink on and off in radio 
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waves. Yet the March 1979 burster, with an apparent rotation period of eight seconds, was 

spinning much more slowly than any radio pulsar then known. Even when not bursting, the 

object emitted a steady glow of x-rays with more radiant power than could be supplied by the 

rotation of a neutron star. Oddly, the star was significantly displaced from the center of the 

supernova remnant. If it was born at the center, as is likely, then it must have recoiled with a 

velocity of about 1,000 kilometers per second at birth.Such high speed was considered unusual 

for a neutron star. Finally, the outbursts themselves seemed inexplicable. X-ray flashes had 

previously been detected from some neutron stars, but they never exceeded the Eddington limit 

by very much. Astronomers ascribed them to thermonuclear fusion of hydrogen or helium or to 

the sudden accretion of matter onto the star. But the brightness of the SGR bursts was 

unprecedented, so a new physical mechanism seemed to be required. 

 

Spin Forever Down 

 

The final burst from the March 1979 source was detected in May 1983; none has been seen in the 

19 years since. Two other SGRs, both within our Milky Way galaxy, went off in 1979 and have 

remained active, emitting hundreds of bursts in the years since. A fourth SGR was located in 

1998. Three of these four objects have possible, but unproved, associations with young 

supernova remnants. Two also lie near very dense clusters of massive young stars, intimating 

that SGRs tend to from such stars. A fifth candidate SGR has gone off only twice;its precise 

location is still unknown.As Los Alamos National Laboratory scientists Baolian L.Cheng, 

Richard I. Epstein, Robert A. Guyer and C. Alex Young pointed out in 1996, SGR bursts are 

statistically similar to earthquakes.The energies have very similar mathematical 

distributions,with less energetic events being more common. Our graduate student Ersin Gögüs 

of the University of Alabama at Huntsville verified this behavior for a large sample of bursts 

from various sources. This and other statistical properties are a hallmark of self-organized 

criticality, whereby a composite system attains a critical state in which a small perturbation can 

trigger a chain reaction. Such behavior occurs in systems as diverse as avalanches on sandpiles 

and magnetic flares on the sun.But why would a neutron star behave like this? The solution 

emerged from an entirely separate line of work, on radio pulsars. Pulsars are widely thought to 

be rapidly rotating, magnetized neutron stars. The magnetic field, which is supported by electric 

currents flowing deep inside the star, rotates with the star. Beams of radio waves shine outward 

from the star‘s magnetic poles and sweep through space as it rotates, like lighthouse beacons—

hence the observed pulsing. The pulsar also blows out a wind of charged particles and low-

frequency electromagnetic waves, which carry away energy and angular momentum, causing its 

rate of spin to decrease gradually. Perhaps the most famous pulsar lies within the Crab Nebula, 

the remnant of a supernova explosion that was observed in 1054. The pulsar rotates once every 

33 milliseconds and is currently slowing at a rate of about 1.3 millisecond every century. 

Extrapolating backward, it was born rotating once every 20 milliseconds. Astronomers expect it 

to continue to spin down,eventually reaching a point when its rotation will be too slow to power 
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the radio pulses. The spin-down rate has been measured for almost every radio pulsar, and theory 

indicates that it depends on the strength of the star‘s magnetic field. From this, most young radio 

pulsars are inferred to have magnetic fields between 1012 and 1013 gauss. For comparison, a 

refrigerator magnet has a strength of about 100 gauss. 

 

The Ultimate Convection Oven 

 

Where did the magnetic field come from in the first place? The traditional assumption was: it is 

as it is, because it was as it was. That is, most astronomers supposed that the magnetic field is a 

relic of the time before the star went supernova. All stars have weak magnetic fields, and those 

fields can be amplified simply by the act of compression. According to Maxwell‘s equations of 

electromagnetism, as a magnetized object shrinks by a factor of two, its magnetic field 

strengthens by a factor of four. The core of a massive star collapses by a factor of 105 from its 

birth through neutron star formation, so its magnetic field should become 1010 times stronger. 

If the core magnetic field started with sufficient strength, this compression could explain pulsar 

magnetism. Unfortunately, the magnetic field deep inside a star cannot be measured, so this 

simple hypothesis cannot be tested. There are also good reasons to believe that compression is 

only part of the story. Within a star, gas can circulate by convection. Warm parcels of ionized 

gas rise, and cold ones sink. Because ionized gas conducts electricity well, any magnetic field 

lines threading the gas are dragged with it as it moves. The field can thus be reworked and 

sometimes amplified. This phenomenon, known as dynamo action, is thought to generate the 

magnetic fields of stars and planets. A dynamo might operate during each phase of the life of a 

massive star, as long as the turbulent core is rotating rapidly enough. Moreover, during a brief 

period after the core of the star turns into a neutron star, convection is especially violent. This 

was first shown in computer simulations in 1986 by Adam Burrows of the University of Arizona 

and James M. Lattimer of the State University of New York at Stony Brook. They found that 

temperatures in a newborn neutron star exceed 30 billion kelvins. Hot nuclear fluid circulates in 

10 milliseconds or less, carrying enormous kinetic energy. After about 10 seconds, the 

convection ceases. 

 

Not long after Burrows and Lattimer conducted their first simulations, Duncan and Thompson, 

then at Princeton University,estimated what this furious convection means for neutronstar 

magnetism. The sun, which undergoes a sedate version of the same process, can be used as a 

reference point. As solar fluid circulates, it drags along magnetic field lines and gives up about 

10 percent of its kinetic energy to the field. If the moving fluid in a newborn neutron star also 

transfers a tenth of its kinetic energy to the magnetic field, then the field would grow stronger 

than 1015 gauss, which is more than 1,000 times as strong as the fields of most radio 

pulsars.Whether the dynamo operates globally (rather than in limited regions) would depend on 

whether the star‘s rate of rotation was comparable to its rate of convection. Deep inside the sun, 

these two rates are similar, and the magnetic field is able to organize itself on large scales. By 
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analogy, a neutron star born rotating as fast as or faster than the convective period of 10 

milliseconds could develop a widespread, ultrastrong magnetic field. In 1992 we named these 

hypothetical neutron stars ―magnetars.‖An upper limit to neutron-star magnetism is about 1017 

gauss; beyond this limit, the fluid inside the star would tend to mix and the field would dissipate. 

No known objects in the universe can generate and maintain fields stronger than this level. 

One ramification of our calculations is that radio pulsars are neutron stars in which the large-

scale dynamo has failed to operate. 

In the case of the Crab pulsar, the newborn neutron star rotated once every 20 

milliseconds, much slower than the rate of convection, so the dynamo never got going. 

 

 

Crinkle Twinkle Little Magnetar 

 

Although we did not develop the magnetar concept to explain SGRs, its implications soon 

became apparent to us. The magnetic field should act as a strong brake on a magnetar‘s rotation. 

Within 5,000 years a field of 1015 gauss would slow the spin rate to once every eight seconds—

neatly explaining the oscillations observed during the March 1979 outburst. As the field evolves, 

it changes shape, driving electric currents along the field lines outside the star. These currents, in 
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turn, generate x-rays. Meanwhile, as the magnetic field moves through the solid crust of a 

magnetar, it bends and stretches the crust.This process heats the interior of the star and 

occasionally breaks the crust in a powerful ―starquake.‖ The accompanying release of magnetic 

energy creates a dense cloud of electrons and positrons, as well as a sudden burst of soft gamma 

rays—accounting for the fainter bursts that give SGRs their name. 

 

More infrequently, the magnetic field becomes unstable and undergoes a large-scale 

rearrangement. Similar (but smaller) upheavals sometimes happen on the sun, leading to solar 

flares. A magnetar easily has enough energy to power a giant flare such as the March 1979 event. 

Theory indicates that the first half-second of that tremendous outburst came from an expanding 

fireball. In 1995 we suggested that part of the fireball was trapped by the magnetic field lines and 

held close to the star. This trapped fireball gradually shrank and then evaporated, emitting x-rays 

all the while. Based on the amount of energy released, we calculated the strength of the magnetic 

field needed to confine the enormous fireball pressure: greater than 1014 gauss, which agrees 

with the field strength inferred from the spin-down rate. A separate estimate of the field had been 

given in 1992 by Bohdan Paczyn´ski of Princeton. He noted that x-rays can slip through a cloud 

of electrons more easily if the charged particles are immersed in a very intense magnetic field. 

For the x-rays during the burst to have been so bright, the magnetic field must have been stronger 

than 1014 gauss. What makes the theory so tricky is that the fields are stronger than the quantum 

electrodynamic threshold of 4 × 1013 gauss. In such strong fields, bizarre things happen. X-ray 

photons readily split in two or merge together. The vacuum itself is polarized, becoming strongly 

birefringent, like a calcite crystal. Atoms are deformed into long cylinders thinner than the 

quantum-relativistic wavelength of an electron [see box on opposite page]. All these strange 

phenomena have observable effects on magnetars. Because this physics was so exotic, the theory 

attracted few researchers at the time. 
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Zapped Again 

 

As these THEORETICAL developments were slowly unfolding, observers were still struggling 

to see the objects that were the sources of the bursts. The first opportunity came when NASA‘s 

orbiting Compton Gamma Ray Observatory recorded a burst of gamma rays late one evening in 

October 1993. This was the break Kouveliotou had been looking for when she joined the 

Compton team in Huntsville. The instrument that registered the burst could determine its position 

only to within a fairly broad swath of sky. Kouveliotou turned for help to the Japanese ASCA 

satellite. Toshio Murakami of the Institute of Space and Astronautical Science in Japan and his 

collaborators soon found an x-ray source from the same swath of sky. The source held steady, 

then gave off another burst—proving beyond all doubt that it was an SGR. The same object had 

first been seen in 1979 and, based on its approximate celestial coordinates, was identified as 

SGR 1806–20. Now its position was fixed much more precisely, and it could be monitored 

across the electromagnetic spectrum. The next leap forward came in 1995, when NASA 

launched the Rossi X-ray Timing Explorer (RXTE), a satellite designed to be highly sensitive to 

variations in x-ray intensity. Using this instrument, Kouveliotou found that the emission from 

SGR1806–20 was oscillating with a period of 7.47 seconds—amazingly close to the 8.0-second 

periodicity observed in the March 1979 burst (from SGR 0526–66). Over the course of five 

years, the SGR slowed by nearly two parts in 1,000. Although the slowdown may seem small, it 

is faster than that of any radio pulsar known, and it implies a magnetic field approaching 1015 

gauss. More thorough tests of the magnetar model would require a second giant flare. Luckily, 

the heavens soon complied. In the early morning of August 27, 1998, some 19 years after the 
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giant flare that began SGR astronomy was observed, an even more intense wave of gamma rays 

and x-rays reached Earth from the depths of space. It drove detectors on seven scientific 

spacecraft to their maximum or off scale. One interplanetary probe, NASA‘s Comet Rendezvous 

Asteroid Flyby, was forced into a protective shutdown mode. The gamma rays hit Earth on its 

nightside, with the source in the zenith over the mid-Pacific Ocean. Fortuitously, in those early 

morning hours electrical engineer Umran S. Inan and his colleagues from Stanford University 

were gathering data on the propagation of very low frequency radio waves around Earth. At 3:22 

A.M. PDT, they noticed an abrupt change in the ionized upper atmosphere. The inner edge of the 

ionosphere plunged down from 85 to 60 kilometers for five minutes. It was astonishing. This 

effect on our planet was caused by a neutron star far across the galaxy, 20,000 light-years away. 

 

Another Magneto Marvel 

 

The August 27 FLARE was almost a carbon copy of the March 1979 event. Intrinsically, it was 

only one tenth as powerful, but because the source was closer to Earth it remains the most 

intense burst of gamma rays from beyond our solar system ever detected. The last few hundred 

seconds of the flare showed conspicuous pulsations, with a 5.16-second period. Kouveliotou and 

her team measured the spin-down rate of the star with RXTE; sure enough, it was slowing down 

at a rate comparable to that of SGR 1806–20, implying a similarly strong magnetic field. 

Another SGR was placed into the magnetar hall of fame. 

 

 
 

The precise localizations of SGRs in x-rays have allowed them to be studied using radio and 

infrared telescopes (though not in visible light, which is blocked by interstellar dust). This work 

has been pioneered by many astronomers, notably Dale Frail of the National Radio Astronomy 

Observatory and Shri Kulkarni of the California Institute of Technology. Other observations 

have shown that all four confirmed SGRs continue to release energy, albeit faintly, even between 
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outbursts. ―Faintly‖ is a relative term: this x-ray glow represents 10 to 100 times as much power 

as the sun radiates in visible light.  

 

By now one can say that magnetar magnetic fields are better measured than pulsar magnetic 

fields. In isolated pulsars, almost the only evidence for magnetic fields as strong as 1012 gauss 

comes from their measured spin-down. In contrast, the combination of rapid spin-down and 

bright x-ray flares provides several independent arguments for 1014- to 1015-gauss fields in 

magnetars. As this article goes to press, Alaa Ibrahim of the NASA Goddard Space Flight Center 

and his collaborators have reported yet another line of evidence for strong magnetic fields in 

magnetars: x-ray spectral lines that seem to be generated by protons gyrating in a 10-15-gauss 

field. One intriguing question is whether magnetars are related to cosmic phenomena besides 

SGRs. The shortest-duration gamma-ray bursts, for example, have yet to be convincingly 

explained, and at least a handful of them could be flares from magnetars in other galaxies. If seen 

from a great distance, even a giant flare would be near the limit of telescope sensitivity.  

 

 
 

Only the brief, hard, intense pulse of gamma rays at the onset of the flare would be detected, so 

telescopes would register it as a GRB. Thompson and Duncan suggested in the mid-1990s that 

magnetars might also explain anomalous x-ray pulsars, a class of objects that resemble SGRs in 

many ways. The one difficulty with this idea was that AXPs had not been observed to burst. 

Recently, however, Victoria M. Kaspi and Fotis P. Gavriil of McGill University and Peter M. 

Woods of the National Space and Technology Center in Huntsville detected bursts from two of 

the seven known AXPs. One of these objects is associated with a young supernova remnant in 

the constellation Cassiopeia. Another AXP in Cassiopeia is the first magnetar candidate to have 

been detected in visible light. Ferdi Hulleman and Marten van Kerkwijk of Utrecht University in 

the Netherlands,working with Kulkarni, spotted it three years ago, and Brian Kern and 
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Christopher Martin of Caltech have since monitored its brightness in visible light. Though 

exceedingly faint, the AXP fades in and out with the x-ray period of the neutron star. These 

observations lend support to the idea that it is indeed a magnetar. The main alternative—that 

AXPs are ordinary neutron stars surrounded by disks of matter—predicts too much visible and 

infrared emission with too little pulsation. In view of these recent discoveries, and the apparent 

silence of the Large Magellanic Cloud burster for nearly 20 years, it appears that magnetars can 

change their clothes. They can remain quiescent for years, even decades, before undergoing 

sudden periods of extreme activity.   

 

Some astronomers argue that AXPs are younger on average than SGRs, but this is still a matter 

of debate. If both SGRs and AXPs are magnetars, then magnetars plausibly constitute a 

substantial fraction of all neutron stars. The story of magnetars is a sobering reminder of how 

much we have yet to understand about our universe. Thus far, we have discerned at most a dozen 

magnetars among the countless stars. They reveal themselves for a split second, in light that only 

the most sophisticated telescopes can detect. Within 10,000 years, their magnetic fields freeze 

and they stop emitting bright x-rays. So those dozen magnetars betray the presence of more than 

a million, and perhaps as many as 100 million, other objects old magnetars that long ago went 

dark. Dim and dead, these strange worlds wander through interstellar space. What other 

phenomena, so rare and fleeting that we have not recognized them, lurk out there? 

 

2. Neutron Stars as Quantum Systems 

 

A neutron star is about 20 km in diameter and has the mass of about 1.4 times that of our Sun. 

This means that a neutron star is so dense that on Earth, one teaspoonful would weigh a billion 

tons! Because of its small size and high density, a neutron star possesses a surface gravitational 

field about 2x1011 times that of Earth. Neutron stars can also have magnetic fields a million 

times stronger than the strongest magnetic fields produced on Earth. 

 

Neutron stars are one of the possible ends for a star. They result from massive stars which have 

mass greater than 4 to 8 times that of our Sun. After these stars have finished burning their 

nuclear fuel, they undergo a supernova explosion. This explosion blows off the outer layers of a 

star into a beautiful supernova remnant. The central region of the star collapses under gravity. It 

collapses so much that protons and electrons combine to form neutrons. Hence the name 

"neutron star". 

 

Neutron stars may appear in supernova remnants, as isolated objects, or in binary systems. Four 

known neutron stars are thought to have planets. When a neutron star is in a binary system, 

astronomers are able to measure its mass. From a number of such binaries seen with radio or X-

ray telescopes, neutron star masses has been found to be about 1.4 times the mass of the Sun. For 

binary systems containing an unknown object, this information helps distinguish whether the 
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object is a neutron star or a black hole, since black holes are more massive than neutron stars. 

Blackholesand neutronstars aresomeofthe most interestingobjects inthe universe because they 

are large enough to have significant gravitationa linfluence, yet compact enough to be 

described by the laws of quantum mechanics. It is well known that a neutron star is supported 

against its own gravity by exclusion-principle repulsion. Therefore, it can be reasoned that a 

neutron star can be described as a quantum system, such as an atom, in which each neuron is 

found in its own energy level.  

 

―Would this model actually work in describing a neutron star?‖ 

These calculations demonstrate the true liberating power of mathematics and science. Because 

the same laws hold everywhere throughout the  universe, one ca nuse these basic equations to 

describe nearly everything-even neutron stars.  It is the consistency, predictability, power and  

elegance o fthese laws that makes science so attractive. 

 

First, it is assumed that the neutron star can be described by the ―old‖quantum mechanics,  

specifically the Schrodinger Equation, and that Newtonian gravity  provides a good 

approximation of the gravitational field in the neutron star. Second, that the density of the 

neutron star is uniform. From this, one can work out the potential energy of each neutron star. 

The gravitational field at a point distance r from the center is given by  g=GMr/R
3
. Thus the 

gravitational potential (relative to the center) is given by: 

V(r) =
GM mn

2R3 r2 ≡
1

2
kr2

    (1) 

the potential for a harmonic oscillator.The solutions to this problem are of the formѰ = 𝐹𝑖 𝑥 𝐹𝑗  𝑦 𝐹𝑘 𝑧 , 

where Fn(x) is the n
th 

solution toa1-dimensional harmonic oscillator. The total energy of this system is 

(ħ𝜔
1

2
+ 𝑖 + 𝑗 + 𝑘), where 𝜔 =  𝑘/𝑚𝑛 . Thus, the total energy only depends on the quantity 𝑖 + 𝑗 + 𝑘 , 

which we denote as n. There are 
1

2
𝑛(𝑛 − 1)degenerate orbital for each value of n, meaning that 

𝑛(𝑛 − 1) ≈ 𝑛2
neutrons can reside in each ―shell‖. 

If one calculates the density at any point from the wavefunction, the density would be fairly 

uniform.  But because they would not fit into this rectangle, it is better to exclude them.  T he 

density could be described as 

𝜌~(1 + 2(
𝑟

𝑅
)2) (1 − (

𝑟

𝑅
)2          (2) 

 

 

 

 

 

Which is 



Quantum Plasmas 54 
 

certainly not constant, but as the graph shows, does not deviate too drastically either. What is 

most interesting about this model is that it can predict the size of the neutron star. We know 

that, since n2 neutrons reside in the n
th 

shell, then a neutro nstar with n filled shells has 2n
3 

neutrons. If there are N neutrons in the star, then then value for the outermost filled shell is: 

𝑛 = 3 
3 

2
𝑁 = 3 

3𝑀

2𝑚𝑛
        (3) 

and its energy is very nearly 3𝑀/2𝑚𝑛 . Now we equate the ―classical‖energy V ( R )  with the 

quantum energy and get: 

𝐺𝑀𝑚𝑛

2𝑅3
𝑅2 =

1

2
𝑘𝑅2 = ħ𝜔𝑛 = ħ 

𝐺𝑀𝑚𝑛

𝑅3𝑚𝑛
× 3 

3𝑀

2𝑚𝑛
       (4)   

This is an equation containing only R,M and several fundamental constants.Solving for R,one 

can find 

𝑅 = 2 ∙ 31/3 ħ2

𝐺𝑚𝑛
8/3 𝑀

−1/3          (5) 

Which looks atrocious to most people, but gives some important insight: The size of a neutron 

star decreases as a mass increases. This is what my astronomy teacher said. Also note that it is 

fairly accurate. For a 2.0 solar mass neutron star, i tpredicts a radius of 7.8 km. 

Of course, the neutron star can  only get so small, and when its radius equals its Schwarzschild 

Radius, it must become a blackhole. This equation is even nastier: 

2𝐺𝑀

𝑐2 = 2 ∙ 31/3 ħ2

𝐺𝑚𝑛
8/3 𝑀

−1/3(6) 

Which becomes 

 

𝑀 = 23/431/4(
ħ𝑐

𝐺
)3/4 1

𝑚𝑛
2 (7) 

This threshold mass is 1.07×1031kg,or about 5.64 solar masses. This limit is believed to be 

between 3 and 5 solar masses, so this estimate is not very far off, especially considering the 

crude assumptions used. 

 

3. Exploring neutron stars (dense baryonic matter) in the laboratory 

 

The understanding of aggregates of matter in terms of its elementary  constituents and their 

interactions is a problem of fundamental interest with far reaching ramifications in science and 

technology. The only way to compress nuclear matter in a laboratory is to accelerate heavy  

atomic nuclei at high energy and to collide them.  
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Why study compressed baryonic matter, or more generally strongly interacting matter at high 

densities and temperature? Most obviously, because it‘s an important piece of Nature. The whole 

universe, in the early moments of the big bang, was filled with the stuff. Today, highly 

compressed baryonic matter occurs in neutron stars and during crucial moments in the 

development of supernova. Compressed baryonic matter is a material we can produce in the 

novel, challenging experiments that probe new experiments of temperature and density. On the 

theoretical side , it is a mathematically well-defined domain with a wealth on novel, challenging 

problems, as well as wide –ranging connections.  

High-energy heavy-ion collision experiments worldwide are devoted to the investigation of 

strongly interacting matter under extreme conditions. 

 

CBM experiment 

 

The mission 

 

Create highest baryon densities in nucleus-nucleus collisions. Explore the properties of super-

dense nuclear matter. Search for in-medium  modification of hadrons. Search for the transition 

from dense hadronic  matter to quark-gluon matter, and for the critical endpoint in the phase 

diagram of strongly interacting matter. 

 

The physics 

 

Fundamental aspects of Quantum-Chromo-Dynamics and astrophysics: The equation-of-state of 

strongly interacting matter at high baryon densities, the restoration of chiral symmetry, the origin 

of hadron masses, the confinement of quarks in hadrons, the structure of neutron stars, the 

dynamics of core-collapse supernovae. 

 

The challenge 

 

Measure rare and penetrating probes such as dilepton pairs from light vector mesons and 

charmonium, open charm, multistrange hyperons, together with collective hadron flow and 

fluctuations in heavy-ion collisions at rates of up to 10 Million reactions per second. 

 

The technique 

 

Tracking and vertex reconstruction with Silicon pixel and strip detectors in a magnetic field, 

electron identification with Ring Imaging Cherenkov detectors and Transition Radiation 

Detectors, or, alternatively, muon identification with a muon detection system, time-of flight 

measurement with diamond strip detectors and Resistive Plate Chamber arrays. High speed 

signal processing and data acquisition. 
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 The goal of the experiment is to emsure multiplicities, phase distribution and flow of protons, 

pions, kaons, hyperons, hadronic resonances, light vector mesons, charmonium and open charm 

including their correlations and event-by enent fluctuations in heavy-ion collisions. The technical 

challenge of the CBM experiment is to identify both, hadrons and leptons, and to filter out rare 

probes at reaction rates of up to 10 MHz with carged particle multiplicities of up to 1000 per 

event. Measurements as these high rates cannot be performed with slow detectors , but rather 

require extremely fast and radiation hard detector components. Moreover, the experiment has to 

provide lepton identification, high-resolution secondary vertex determination and a high speed 

trigger and data acquisition system. The CBM detector system will have the capability to 

measure both electrons and muons. 

 

The heart of the experiment will be a silicon tracking  and vertex detection system installed in a 

large acceptance dipole magnet. The Silicon Tracking System (STM) consists of low mass 

silicon micro strip detectors possibly complemented by one or two hybrid-pixel detector layers 

providing unambiguous space point measurements. The STS allows for track reconstruction in a 

wide momentum range from about 100MeV up to more then 10GeV with a momentum 

resolution of about 1%. 

 A key feature of the CBM experiment is online event selection which requires free streaming 

read-out electronics and fast algorithms running on computer farms based on future many-core 

arhitectures. 

 

Fig. 1. The compressed Baryonic Matter (CBM) experiment. 
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